Search results for "82C70"
showing 3 items of 3 documents
Macroscopic conductivity of free fermions in disordered media
2014
We conclude our analysis of the linear response of charge transport in lattice systems of free fermions subjected to a random potential by deriving general mathematical properties of its conductivity at the macroscopic scale. The present paper belongs to a succession of studies on Ohm and Joule's laws from a thermodynamic viewpoint. We show, in particular, the existence and finiteness of the conductivity measure $\mu _{\mathbf{\Sigma }}$ for macroscopic scales. Then we prove that, similar to the conductivity measure associated to Drude's model, $\mu _{\mathbf{\Sigma }}$ converges in the weak$^{\ast } $-topology to the trivial measure in the case of perfect insulators (strong disorder, compl…
A 1D coupled Schrödinger drift-diffusion model including collisions
2005
We consider a one-dimensional coupled stationary Schroedinger drift-diffusion model for quantum semiconductor device simulations. The device domain is decomposed into a part with large quantum effects (quantum zone) and a part where quantum effects are negligible (classical zone). We give boundary conditions at the classic-quantum interface which are current preserving. Collisions within the quantum zone are introduced via a Pauli master equation. To illustrate the validity we apply the model to three resonant tunneling diodes.
Non-cooperative Equilibria of Fermi Systems With Long Range Interactions
2019
We define a Banach space $\mathcal{M}_{1}$ of models for fermions or quantum spins in the lattice with long range interactions and explicit the structure of (generalized) equilibrium states for any $\mathfrak{m}\in \mathcal{M}_{1}$. In particular, we give a first answer to an old open problem in mathematical physics - first addressed by Ginibre in 1968 within a different context - about the validity of the so-called Bogoliubov approximation on the level of states. Depending on the model $\mathfrak{m}\in \mathcal{M}_{1}$, our method provides a systematic way to study all its correlation functions and can thus be used to analyze the physics of long range interactions. Furthermore, we show tha…