Search results for "ACID"

showing 10 items of 13107 documents

The role of the Strait of Gibraltar in shaping the genetic structure of the Mediterranean Grenadier, Coryphaenoides mediterraneus, between the Atlant…

2017

24 pages, 4 figures, 4 tables, supplementary information https://dx.doi.org/10.1371/journal.pone.0174988.-- Data Availability: The mtDNA COI sequences can be accessed at BOLD systems through the sample ID: ME-9911; ME-11972; ME-13727; GLF011. New mtDNA COI sequences can be accessed at GenBank by the accession numbers KY345206 - KY345398. GenBank accession numbers for close related species of C. mediterraneus are: Coryphaenoides striaturus - KX656427.1, KX656428.1; Coryphaenoides murray - KX656411.1, KX656410.1; Coryphaenoides carapinus - KX656382.1, KX656381.1; Coryphaenoides brevibarbis - KX656377.1, KX656376.1, KX656375.1. An alignment in fasta with all the haplotypes and respective frequ…

0106 biological sciences0301 basic medicineMediterranean climateLife CyclesHeredityPopulation geneticslcsh:MedicineArtificial Gene Amplification and ExtensionBiochemistryPolymerase Chain Reaction01 natural sciencesBathyal zoneLarvaeMediterranean sealcsh:ScienceAtlantic OceanPrincipal Component Analysiseducation.field_of_studyMultidisciplinaryGeographyMitochondrial DNANucleic acidsGenetic MappingGenetic structureResearch ArticleFish ProteinsGene FlowForms of DNAPopulationZoologyBiologyResearch and Analysis MethodsModels Biological010603 evolutionary biologyElectron Transport Complex IVEvolution Molecular03 medical and health sciencesMediterranean SeaGeneticsAnimalsComputer Simulation14. Life underwaterMolecular Biology TechniqueseducationMolecular BiologyGibraltarEvolutionary BiologyPopulation Biologylcsh:RGenetic VariationBiology and Life SciencesPaleontologyBayes TheoremDNAGenetic divergenceGadiformes030104 developmental biologyHaplotypesGenetic LociEarth SciencesBiological dispersallcsh:QPaleogeneticsPopulation GeneticsMicrosatellite RepeatsDevelopmental BiologyPLoS ONE
researchProduct

Hexanoic Acid Treatment Prevents Systemic MNSV Movement in Cucumis melo Plants by Priming Callose Deposition Correlating SA and OPDA Accumulation

2017

Unlike fungal and bacterial diseases, no direct method is available to control viral diseases. The use of resistance-inducing compounds can be an alternative strategy for plant viruses. Here we studied the basal response of melon to Melon necrotic spot virus (MNSV) and demonstrated the efficacy of hexanoic acid (Hx) priming, which prevents the virus from systemically spreading. We analysed callose deposition and the hormonal profile and gene expression at the whole plant level. This allowed us to determine hormonal homeostasis in the melon roots, cotyledons, hypocotyls, stems and leaves involved in basal and hexanoic acid-induced resistance (Hx-IR) to MNSV. Our data indicate important roles…

0106 biological sciences0301 basic medicineMelonsalicylic acidPlant Sciencelcsh:Plant culture01 natural sciencesHypocotylMicrobiologyOPDA03 medical and health scienceschemistry.chemical_compoundCucumis meloPlant viruslcsh:SB1-1110Original ResearchHexanoic acidPriming by natural compoundsbiologyMelon necrotic spot virusCallosefood and beveragesSalicylic acidbiology.organism_classificationpriming by natural compounds030104 developmental biologychemistryBiochemistryMNSVhexanoic acidHexanoic acidCucumisSalicylic acid010606 plant biology & botany
researchProduct

Advantages of Using Blend Cultures of Native L. plantarum and O. oeni Strains to Induce Malolactic Fermentation of Patagonian Malbec Wine

2018

The malolactic fermentation (MLF) of Patagonian Malbec wine inoculated with blend cultures of selected native strains of Lactobacillus plantarum and Oenococcus oeni was monitored during 14 days, analyzing the strains ability to modify the content of some organic acids and to change the volatile compounds profile. The performance of the LAB strains was tested as single and blends cultures of both species. An implantation control by RAPD PCR was also carried out to differentiate among indigenous and inoculated strains. The L. plantarum strains UNQLp11 and UNQLp155 and the O. oeni strain UNQOe73.2 were able to remain viable during the monitoring time of MLF, whereas the O. oeni strain UNQOe31b…

0106 biological sciences0301 basic medicineMicrobiology (medical)030106 microbiologylcsh:QR1-50201 natural sciencesMicrobiologylcsh:Microbiology03 medical and health sciences010608 biotechnologyL-malic acidMalolactic fermentationFood scienceOenococcus oeniWinePatagonian Malbec wineflavorbiologyStrain (chemistry)ChemistryInoculationfood and beveragesbiology.organism_classificationFlavorRAPDL. plantarumO. oeniLactobacillus plantarumFrontiers in Microbiology
researchProduct

The Nonbilayer Lipid MGDG and the Major Light-Harvesting Complex (LHCII) Promote Membrane Stacking in Supported Lipid Bilayers.

2018

The thylakoid membrane of algae and land plants is characterized by its intricate architecture, comprising tightly appressed membrane stacks termed grana. The contributions of individual components to grana stack formation are not yet fully elucidated. As an in vitro model, we use supported lipid bilayers made of thylakoid lipid mixtures to study the effect of major light-harvesting complex (LHCII), different lipids, and ions on membrane stacking, seen as elevated structures forming on top of the planar membrane surface in the presence of LHCII protein. These structures were examined by confocal laser scanning microscopy, atomic force microscopy, and fluorescence recovery after photobleachi…

0106 biological sciences0301 basic medicineMicroscopy ConfocalChemistryLipid BilayersStackingLight-Harvesting Protein ComplexesPeasfood and beveragesFluorescence recovery after photobleachingMicroscopy Atomic Force01 natural sciencesBiochemistryLight-harvesting complexDiglycerides03 medical and health sciences030104 developmental biologyGlycolipidMembraneThylakoidConfocal laser scanning microscopyBiophysicslipids (amino acids peptides and proteins)Lipid bilayer010606 plant biology & botanyBiochemistry
researchProduct

The Odorant-Binding Proteins of the Spider Mite Tetranychus urticae

2021

Spider mites are one of the major agricultural pests, feeding on a large variety of plants. As a contribution to understanding chemical communication in these arthropods, we have characterized a recently discovered class of odorant-binding proteins (OBPs) in Tetranychus urticae. As in other species of Chelicerata, the four OBPs of T. urticae contain six conserved cysteines paired in a pattern (C1–C6, C2–C3, C4–C5) differing from that of insect counterparts (C1–C3, C2–C5, C4–C6). Proteomic analysis uncovered a second family of OBPs, including twelve members that are likely to be unique to T. urticae. A three-dimensional model of TurtOBP1, built on the recent X-ray structure of Varroa destruc…

0106 biological sciences0301 basic medicineModels MolecularProteomicsProteomeOdorant bindingProtein ConformationInsectLigandsReceptors Odorant01 natural scienceschemistry.chemical_compoundTetranychus urticaeBiology (General)SpectroscopyPhylogenymedia_commonmass spectrometryGeneticsbiologyligand-bindingMolecular Structurespider mitesGeneral MedicineTetranychus urticaeComputer Science ApplicationsChemistryConiferyl aldehydedisulfide bridgesTetranychidaeProtein Bindingspider mites.QH301-705.5media_common.quotation_subjectodorant-binding proteinsCatalysisArticleInorganic Chemistry03 medical and health sciencesSpider mite<i>Tetranychus urticae</i>AnimalsAmino Acid SequencePhysical and Theoretical ChemistryQD1-999Molecular BiologySpiderOrganic Chemistrybiology.organism_classification010602 entomology030104 developmental biologychemistryVarroa destructorOdorantsChelicerataInternational Journal of Molecular Sciences
researchProduct

Overexpression of the triose phosphate translocator (TPT) complements the abnormal metabolism and development of plastidial glycolytic glyceraldehyde…

2017

The presence of two glycolytic pathways working in parallel in plastids and cytosol has complicated the understanding of this essential process in plant cells, especially the integration of the plastidial pathway into the metabolism of heterotrophic and autotrophic organs. It is assumed that this integration is achieved by transport systems, which exchange glycolytic intermediates across plastidial membranes. However, it is unknown whether plastidial and cytosolic pools of 3-phosphoglycerate (3-PGA) can equilibrate in non-photosynthetic tissues. To resolve this question, we employed Arabidopsis mutants of the plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp)…

0106 biological sciences0301 basic medicineMutantArabidopsisDehydrogenasePlant ScienceGlyceric Acids01 natural sciences03 medical and health sciencesGeneticsGlycolysisPlastidsPlastidGlyceraldehyde 3-phosphate dehydrogenasebiologyArabidopsis ProteinsGlyceraldehyde-3-Phosphate DehydrogenasesCell BiologyMetabolismCytosol030104 developmental biologyBiochemistryTriose phosphate translocatorbiology.proteinGlycolysis010606 plant biology & botanyThe Plant journal : for cell and molecular biology
researchProduct

An Arabidopsis Mutant Over-Expressing Subtilase SBT4.13 Uncovers the Role of Oxidative Stress in the Inhibition of Growth by Intracellular Acidificat…

2020

Intracellular acid stress inhibits plant growth by unknown mechanisms and it occurs in acidic soils and as consequence of other stresses. In order to identify mechanisms of acid toxicity, we screened activation-tagging lines of Arabidopsis thaliana for tolerance to intracellular acidification induced by organic acids. A dominant mutant, sbt4.13-1D, was isolated twice and shown to over-express subtilase SBT4.13, a protease secreted into endoplasmic reticulum. Activity measurements and immuno-detection indicate that the mutant contains less plasma membrane H+-ATPase (PMA) than wild type, explaining the small size, electrical depolarization and decreased cytosolic pH of the mutant but not orga…

0106 biological sciences0301 basic medicineMutantmedicine.disease_cause01 natural sciencesCatalysisInorganic Chemistrylcsh:ChemistryH<sup>+</sup>-ATPase03 medical and health sciencesorganic acidsmedicinePhysical and Theoretical ChemistryMolecular Biologylcsh:QH301-705.5Spectroscopychemistry.chemical_classificationReactive oxygen speciesNADPH oxidasebiologyNADPH oxidaseEndoplasmic reticulumOrganic ChemistryWild typeROSGeneral MedicineComputer Science ApplicationsCell biology030104 developmental biologychemistrylcsh:Biology (General)lcsh:QD1-999biology.proteinactivation-taggingIntracellularOxidative stress010606 plant biology & botanyOrganic acidInternational Journal of Molecular Sciences
researchProduct

Effects of transgenic expression of Brevibacterium linens methionine gamma lyase (MGL) on accumulation of Tylenchulus semipenetrans and key aminoacid…

2017

Key message Carrizo transgenic plants overexpressing methionine-gamma-lyase produced dimethyl sulfide. The transgenic plants displayed more resistance to nematode attacks (Tylenculus semipenetrans) and may represent an innovative strategy for nematode control. Abstract Tylenchulus semipenetrans is a nematode pest of many citrus varieties that causes extensive damage to commercial crops worldwide. Carrizo citrange vr. (Citrus sinensis L. Usb × Poncirus trifoliate L. Raf) plants overexpressing Brevibacterium linens methionine-gamma-lyase (BlMGL) produced the sulfur volatile compound dimethyl sulfide (DMS). The aim of this work was to determine if transgenic citrus plants expressing BlMGL show…

0106 biological sciences0301 basic medicineNematodesPlant BiologyPlant ScienceGenetically modified crops01 natural sciencesPlant Rootschemistry.chemical_compoundMethionineMethionine gamma lyaseBrevibacteriumAmino AcidsNematodeCitrus sinensibiologySulfur volatilefood and beveragesGeneral MedicinePlantsPlants Genetically ModifiedTylenchulus semipenetransAmino AcidHorticultureCarbon-Sulfur LyasesBiochemistryCarbon-Sulfur LyasePlant LeaveCitrus × sinensisCitrus sinensisTylenchidaMethionine gamma-lyaseSulfideTransgenePlant Biology & BotanyPlant DiseaseGenetically ModifiedSulfidesArticle03 medical and health sciencesGeneticSulfur volatilesGeneticsAnimalsPlant DiseasesMethionineAnimalfungiPlant RootBrevibacteriumbiology.organism_classificationBrain DisordersPlant Leaves030104 developmental biologychemistryGlycineBiochemistry and Cell BiologyAgronomy and Crop Science010606 plant biology & botany
researchProduct

Evolutionary diversification of type-2 HDAC structure, function and regulation in Nicotiana tabacum

2018

Ministère de l'Education Nationale et de la Recherche ; Conseil Régional de Bourgogne (PARI AGRALE8) ; Association pour la Recherche sur les Nicotianacées ; Conseil Régional de Bourgogne; International audience; Type-2 HDACs (HD2s) are plant-specific histone deacetylases that play diverse roles during development and in responses to biotic and abiotic stresses. In this study we characterized the six tobacco genes encoding HD2s that mainly differ by the presence or the absence of a typical zinc finger in their C-terminal part. Of particular interest, these HD2 genes exhibit a highly conserved intron/exon structure. We then further investigated the phylogenetic relationships among the HD2 gen…

0106 biological sciences0301 basic medicineNicotiana tabacumPlant Science01 natural sciencesEvolution MolecularType-2 HDAC (HD2)03 medical and health sciencesPhylogeneticsZinc fingerTobaccoGeneticsArabidopsis thalianaGene family[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyAmino Acid SequenceGenePhylogenySolanaceaePlant ProteinsZinc fingerGeneticsbiologyModels GeneticIntronZinc FingersGeneral MedicineSalt Tolerancebiology.organism_classificationSalt stress responseComplementation030104 developmental biologyHistone DeACetylase (HDAC)Agronomy and Crop ScienceSequence Alignment010606 plant biology & botany
researchProduct

Defense Priming in Nicotiana tabacum Accelerates and Amplifies ‘New’ C/N Fluxes in Key Amino Acid Biosynthetic Pathways

2020

: In the struggle to survive herbivory by leaf-feeding insects, plants employ multiple strategies to defend themselves. One mechanism by which plants increase resistance is by intensifying their responsiveness in the production of certain defense agents to create a rapid response. Known as defense priming, this action can accelerate and amplify responses of metabolic pathways, providing plants with long-lasting resistance, especially when faced with waves of attack. In the work presented, short-lived radiotracers of carbon administered as 11CO2 and nitrogen administered as 13NH3 were applied in Nicotiana tabacum, to examine the temporal changes in &lsquo

0106 biological sciences0301 basic medicineNicotiana tabacumamino acid metabolismPlant Science01 natural sciencesplant insect herbivorySerine03 medical and health scienceschemistry.chemical_compoundBiosynthesislcsh:Botanynitrogen-13Shikimate pathwaycarbon-11Secondary metabolismEcology Evolution Behavior and SystematicsX-ray fluorescence imagingchemistry.chemical_classificationEcologybiologydefense primingJasmonic acidfungifood and beveragesbiology.organism_classificationlcsh:QK1-989Amino acidMetabolic pathway030104 developmental biologychemistryBiochemistryisotope ratio analysis010606 plant biology & botanyPlants
researchProduct