Search results for "ALAN"
showing 10 items of 3261 documents
Retrotransposon insertions can initiate colorectal cancer and are associated with poor survival
2019
Genomic instability pathways in colorectal cancer (CRC) have been extensively studied, but the role of retrotransposition in colorectal carcinogenesis remains poorly understood. Although retrotransposons are usually repressed, they become active in several human cancers, in particular those of the gastrointestinal tract. Here we characterize retrotransposon insertions in 202 colorectal tumor whole genomes and investigate their associations with molecular and clinical characteristics. We find highly variable retrotransposon activity among tumors and identify recurrent insertions in 15 known cancer genes. In approximately 1% of the cases we identify insertions in APC, likely to be tumor-initi…
Combined effects of the PNPLA3 rs738409, TM6SF2 rs58542926, and MBOAT7 rs641738 variants on NAFLD severity: a multicenter biopsy-based study.
2016
The PNPLA3 p.I148M, TM6SF2 p.E167K, and MBOAT7 rs641738 variants represent genetic risk factors for nonalcoholic fatty liver disease (NAFLD). Here we investigate if these polymorphisms modulate both steatosis and fibrosis in patients with NAFLD. We recruited 515 patients with NAFLD (age 16–88 years, 280 female patients). Liver biopsies were performed in 320 patients. PCR-based assays were used to genotype the PNPLA3, TM6SF2, and MBOAT7 variants. Carriers of the PNPLA3 and TM6SF2 risk alleles showed increased serum aspartate aminotransferase and alanine transaminase activities (P 0.05). The MBOAT7 variant was solely associated with increased fibrosis (P = 0.046). In the multivariate model, v…
Functional Mechanics of a Pectin-Based Pleural Sealant after Lung Injury.
2017
Pleural injury and associated air leaks are a major influence on patient morbidity and healthcare costs after lung surgery. Pectin, a plant-derived heteropolysaccharide, has recently demonstrated potential as an adhesive binding to the glycocalyx of visceral mesothelium. Since bioadhesion is a process likely involving the interpenetration of the pectin-based polymer with the glycocalyx, we predicted that the pectin-based polymer may also be an effective sealant for pleural injury. To explore the potential role of an equal (weight%) mixture of high-methoxyl pectin and carboxymethylcellulose as a pleural sealant, we compared the yield strength of the pectin-based polymer to commonly available…
A 13 mer LNA-i-miR-221 Inhibitor Restores Drug Sensitivity in Melphalan-Refractory Multiple Myeloma Cells.
2016
Abstract Purpose: The onset of drug resistance is a major cause of treatment failure in multiple myeloma. Although increasing evidence is defining the role of miRNAs in mediating drug resistance, their potential activity as drug-sensitizing agents has not yet been investigated in multiple myeloma. Experimental Design: Here we studied the potential utility of miR-221/222 inhibition in sensitizing refractory multiple myeloma cells to melphalan. Results: miR-221/222 expression inversely correlated with melphalan sensitivity of multiple myeloma cells. Inhibition of miR-221/222 overcame melphalan resistance and triggered apoptosis of multiple myeloma cells in vitro, in the presence or absence of…
Immunometabolism Modulation in Therapy.
2021
The study of cancer biology should be based around a comprehensive vision of the entire tumor ecosystem, considering the functional, bioenergetic and metabolic state of tumor cells and those of their microenvironment, and placing particular importance on immune system cells. Enhanced understanding of the molecular bases that give rise to alterations of pathways related to tumor development can open up new therapeutic intervention opportunities, such as metabolic regulation applied to immunotherapy. This review outlines the role of various oncometabolites and immunometabolites, such as TCA intermediates, in shaping pro/anti-inflammatory activity of immune cells such as MDSCs, T lymphocytes, …
Critical amino acids for the insecticidal activity of Vip3Af from Bacillus thuringiensis: Inference on structural aspects
2018
AbstractVip3 vegetative insecticidal proteins from Bacillus thuringiensis are an important tool for crop protection against caterpillar pests in IPM strategies. While there is wide consensus on their general mode of action, the details of their mode of action are not completely elucidated and their structure remains unknown. In this work the alanine scanning technique was performed on 558 out of the total of 788 amino acids of the Vip3Af1 protein. From the 558 residue substitutions, 19 impaired protein expression and other 19 substitutions severely compromised the insecticidal activity against Spodoptera frugiperda. The latter 19 substitutions mainly clustered in two regions of the protein …
On the (un)coupling of the chromophore, tongue interactions, and overall conformation in a bacterial phytochrome
2018
Phytochromes are photoreceptors in plants, fungi, and various microorganisms and cycle between metastable red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Their light responses are thought to follow a conserved structural mechanism that is triggered by isomerization of the chromophore. Downstream structural changes involve refolding of the so-called tongue extension of the phytochrome-specific GAF-related (PHY) domain of the photoreceptor. The tongue is connected to the chromophore by conserved DIP and PRXSF motifs and a conserved tyrosine, but the role of these residues in signal transduction is not clear. Here, we examine the tongue interactions and their interplay with …
Addition of thiols to the double bond of dipeptide C-terminal dehydroalanine as a source of new inhibitors of cathepsin C.
2017
Addition of thiols to double bond of glycyl-dehydroalanine and phenyl-dehydroalanine esters provided micromolar inhibitors of cathepsin C. The structure-activity studies indicated that dipeptides containing N-terminal phenylalanine exhibit higher affinity towards the enzyme. A series of C-terminal S-substituted cysteines are responsible for varying interaction with S1 binding pocket of cathepsin C. Depending on diastereomer these compounds most likely act as slowly reacting substrates or competitive inhibitors. This was proved by TLC analysis of the medium in which interaction of methyl (S)-phenylalanyl-(R,S)-(S-adamantyl)cysteinate (7i) with the enzyme was studied. Molecular modeling enabl…
Probing Differential Binding Mechanisms of Phenylalanine-Glycine-Rich Nucleoporins by Single-Molecule FRET
2018
Abstract Phenylalanine-glycine-rich nucleoporins (FG-Nups) are intrinsically disordered proteins, constituting the selective barrier of the nuclear pore complex. They are highly dynamic under physiological conditions and studying their interaction with nuclear transport receptors (NTRs) is key to understanding the molecular mechanism of nucleocytoplasmic transport. Distinct conformational features of FG-Nups interacting with diverse NTRs can be detected by multiparameter single-molecule fluorescence energy transfer (smFRET), which is a powerful technique for studying the dynamics and interactions of biomolecules in solution. Here we provide a detailed protocol utilizing smFRET to reveal dif…
Two differential binding mechanisms of FG-nucleoporins and nuclear transport receptors
2018
Summary Phenylalanine-glycine-rich nucleoporins (FG-Nups) are intrinsically disordered proteins, constituting the selective barrier of the nuclear pore complex (NPC). Previous studies showed that nuclear transport receptors (NTRs) were found to interact with FG-Nups by forming an “archetypal-fuzzy” complex through the rapid formation and breakage of interactions with many individual FG motifs. Here, we use single-molecule studies combined with atomistic simulations to show that, in sharp contrast, FG-Nup214 undergoes a coupled reconfiguration-binding mechanism when interacting with the export receptor CRM1. Association and dissociation rate constants are more than an order of magnitude lowe…