Search results for "ALUMINUM-OXIDE"

showing 2 items of 2 documents

Atomic layer deposition of ternary ruthenates by combining metalorganic precursors with RuO4 as the co-reactant

2022

In this work, the use of ruthenium tetroxide (RuO4) as a co-reactant for atomic layer deposition (ALD) is reported. The role of RuO4 as a co-reactant is twofold: it acts both as an oxidizing agent and as a Ru source. It is demonstrated that ALD of a ternary Ru-containing metal oxide (i.e. a metal ruthenate) can be achieved by combining a metalorganic precursor with RuO4 in a two-step process. RuO4 is proposed to combust the organic ligands of the adsorbed precursor molecules while also binding RuO2 to the surface. As a proof of concept two metal ruthenate processes are developed: one for aluminum ruthenate, by combining trimethylaluminum (TMA) with RuO4; and one for platinum ruthenate, by c…

Materials scienceHydrogenRUTHENIUMOXIDE THIN-FILMSDIFFUSION BARRIERInorganic chemistryOxidechemistry.chemical_elementAmorphous solidInorganic ChemistryChemistryAtomic layer depositionchemistry.chemical_compoundPhysics and AstronomychemistryALUMINUM-OXIDEOxidizing agentThin filmPlatinumTernary operationDalton Transactions
researchProduct

Blistering mechanisms of atomic-layer-deposited AlN and Al2O3 films

2017

Blistering of protective, structural, and functional coatings is a reliability risk pestering films ranging from elemental to ceramic ones. The driving force behind blistering comes from either excess hydrogen at the film-substrate interface or stress-driven buckling. Contrary to the stress-driven mechanism, the hydrogen-initiated one is poorly understood. Recently, it was shown that in the bulk Al-Al2O3 system, the blistering is preceded by the formation of nano-sized cavities on the substrate. The stress-and hydrogen-driven mechanisms in atomic-layer-deposited (ALD) films are explored here. We clarify issues in the hydrogen-related mechanism via high-resolution microscopy and show that at…

Materials sciencePhysics and Astronomy (miscellaneous)Siliconchemistry.chemical_element02 engineering and technologySubstrate (electronics)ceramicsmikroskopia01 natural sciencespiezoelectric filmskeramiikkaStress (mechanics)Atomic layer depositionTHIN-FILMSALUMINUM-OXIDE0103 physical sciencesWATERCRYSTAL-STRUCTURECeramicThin filmComposite materialSILICON010302 applied physicsta213ta114HYDROGEN021001 nanoscience & nanotechnologyDIFFUSIONdermatologychemistrythin filmsTransmission electron microscopyvisual_artvisual_art.visual_art_mediummicroscopyGROWTHihotautioppiohutkalvot0210 nano-technologyLayer (electronics)
researchProduct