Search results for "ANIMAL MODELS"

showing 10 items of 164 documents

Synthesis of [11C]SSR149415 and preliminary imaging studies using positron emission tomography.

2010

Abstract SSR149415 was the first non-peptide vasopressin-(V1b) receptor antagonist reported. It has been used to probe the role of V1b receptors in animal models of depression, aggression, and stress-anxiety, and was progressed to clinical trials for the treatment of depression. Due to the interest in V1b receptors as a therapeutic target and the growing use of SSR149415 in preclinical research, we developed a method to label SSR145419 with carbon-11 and have studied its pharmacokinetics in non-human primates using positron emission tomography.

BiodistributionReceptors VasopressinIndolesPyrrolidinesmedicine.drug_classClinical BiochemistryPharmaceutical ScienceAnxietyBiochemistryPreclinical researchAnimal models of depressionDrug DiscoverymedicineAnimalsCarbon RadioisotopesReceptorMolecular Biologymedicine.diagnostic_testbusiness.industryChemistryDepressionOrganic ChemistryAntagonistReceptor antagonistClinical trialBiochemistryAnti-Anxiety AgentsPositron emission tomographyPositron-Emission TomographyMolecular MedicineNuclear medicinebusinessAntidiuretic Hormone Receptor AntagonistsPapioBioorganicmedicinal chemistry letters
researchProduct

Expression Patterns and Subcellular Localization of Carbonic Anhydrases Are Developmentally Regulated during Tooth Formation

2014

Abstract Carbonic anhydrases (CAs) play fundamental roles in several physiological events, and emerging evidence points at their involvement in an array of disorders, including cancer. The expression of CAs in the different cells of teeth is unknown, let alone their expression patterns during odontogenesis. As a first step towards understanding the role of CAs during odontogenesis, we used immunohistochemistry, histochemistry and in situ hybridization to reveal hitherto unknown dynamic distribution patterns of eight CAs in mice. The most salient findings include expression of CAII/Car2 not only in maturation-stage ameloblasts (MA) but also in the papillary layer, dental papilla mesenchyme, …

BiomineralizationPathologyPhysiologylcsh:MedicineMiceLääketieteen bioteknologia - Medical biotechnologyMolecular Cell BiologyMorphogenesisMedicine and Health Scienceslcsh:ScienceIn Situ HybridizationCarbonic AnhydrasesRegulation of gene expressionMultidisciplinaryGene Expression Regulation DevelopmentalAnimal ModelsEpithelial cell rests of MalassezImmunohistochemistryCell biologyIsoenzymesProtein Transportmedicine.anatomical_structureOrgan SpecificityOdontogenesisAnatomyCellular Structures and OrganellesAmeloblastResearch ArticleCell Physiologymedicine.medical_specialtyHistologyMesenchymeMouse ModelsIn situ hybridizationBiologyResearch and Analysis MethodsGene Expression Regulation EnzymologicModel Organismsstomatognathic systemNotochordmedicineAnimalsDental papillalcsh:RBiology and Life SciencesCell BiologyMolecular DevelopmentOdontoblastAnimals Newbornlcsh:QLysosomesPhysiological ProcessesToothDevelopmental BiologyPLoS ONE
researchProduct

Postnatal Overfeeding Causes Early Shifts in Gene Expression in the Heart and Long-Term Alterations in Cardiometabolic and Oxidative Parameters

2013

International audience; Background: Postnatal overfeeding (OF) in rodents induces a permanent moderate increase in body weight in adulthood. However, the repercussions of postnatal OF on cardiac gene expression, cardiac metabolism and nitro-oxidative stress are less well known. Methodology/Principal Findings: Immediately after birth, litters of C57BL/6 mice were either maintained at 10 (normal-fed group, NF), or reduced to 3 in order to induce OF. At weaning, mice of both groups received a standard diet. The cardiac gene expression profile was determined at weaning and cardiac metabolism and oxidative stress were assessed at 7 months. The cardiac expression of several genes, including membe…

Blood GlucoseAnatomy and PhysiologyTime FactorsMouseMicroarrays[SDV]Life Sciences [q-bio]Myocardial InfarctionGene Expressionlcsh:Medicine030204 cardiovascular system & hematologyCardiovascularmedicine.disease_causeCardiovascular SystemMiceOvernutrition0302 clinical medicineBlood plasmaInsulinlcsh:Science2. Zero hungerRegulation of gene expression0303 health sciencesMultidisciplinaryEjection fractionVentricular RemodelingHeartAnimal ModelsReactive Nitrogen Species[SDV.MHEP.CSC] Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular systemApelin[SDV] Life Sciences [q-bio]Body CompositionMedicineFemaleDisease SusceptibilityOxidation-ReductionResearch ArticlePhysiogenomicsmedicine.medical_specialtyDiastoleEndocrine SystemMyocardial Reperfusion InjuryBiology03 medical and health sciencesModel Organisms[SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular systemInternal medicinemedicineAnimalsWeaningVentricular remodelingBiology030304 developmental biologyEndocrine Physiology[ SDV ] Life Sciences [q-bio]Gene Expression ProfilingMyocardiumBody Weightlcsh:RComputational Biologymedicine.diseaseOxidative StressEndocrinologyGene Expression Regulationlcsh:QOxidative stress
researchProduct

Development and characterization of an experimental model of diet-induced metabolic syndrome in rabbit

2017

Metabolic syndrome (MetS) has become one of the main concerns for public health because of its link to cardiovascular disease. Murine models have been used to study the effect of MetS on the cardiovascular system, but they have limitations for studying cardiac electrophysiology. In contrast, the rabbit cardiac electrophysiology is similar to human, but a detailed characterization of the different components of MetS in this animal is still needed. Our objective was to develop and characterize a diet-induced experimental model of MetS that allows the study of cardiovascular remodeling and arrhythmogenesis. Male NZW rabbits were assigned to control (n = 15) or MetS group (n = 16), fed during 2…

Blood GlucoseMale0301 basic medicinePhysiologylcsh:MedicineBlood Pressure030204 cardiovascular system & hematologyVascular MedicineBiochemistryEatingchemistry.chemical_compound0302 clinical medicineGlucose MetabolismDietary SucroseBlood plasmaMedicine and Health Scienceslcsh:ScienceMammalsMetabolic SyndromeMultidisciplinaryLiver DiseasesFatty liverAnimal ModelsBody FluidsBloodExperimental Organism SystemsPhysiological ParametersLiverVertebratesHypertensionMetabolomeCarbohydrate MetabolismRabbitsAnatomyResearch Articlemedicine.medical_specialtyMean arterial pressureBilirubinDiastoleGastroenterology and HepatologyBiologyResearch and Analysis MethodsDiet High-FatBlood Plasma03 medical and health sciencesInternal medicineGlucose IntolerancemedicineAnimalsMetabolomicsObesityNuclear Magnetic Resonance BiomolecularNutritionAnalysis of VarianceBody Weightlcsh:ROrganismsBiology and Life Sciencesmedicine.diseaseDietFatty LiverDisease Models AnimalMetabolism030104 developmental biologyEndocrinologyBlood pressurechemistryAmnioteslcsh:QMetabolic syndromeSteatosisPLOS ONE
researchProduct

Human Haemato-Endothelial Precursors: Cord Blood CD34+ Cells Produce Haemogenic Endothelium

2012

Embryologic and genetic evidence suggest a common origin of haematopoietic and endothelial lineages. In the murine embryo, recent studies indicate the presence of haemogenic endothelium and of a common haemato-endothelial precursor, the haemangioblast. Conversely, so far, little evidence supports the presence of haemogenic endothelium and haemangioblasts in later stages of development. Our studies indicate that human cord blood haematopoietic progenitors (CD34+45+144-), triggered by murine hepatocyte conditioned medium, differentiate into adherent proliferating endothelial precursors (CD144+CD105+CD146+CD31+CD45-) capable of functioning as haemogenic endothelium. These cells, proven to give…

CD31MouseCellular differentiationMESH: HematopoiesisAntigens CD34murine hepatocytesMESH: CadherinsMESH: HepatocytesMice0302 clinical medicineMolecular Cell BiologyHematopoiesiHepatocyteMESH: Animalsendothelial lineageMESH: Antigens CDCells Cultured0303 health sciencesMultidisciplinaryMESH: Culture Media ConditionedStem CellsMedicine (all)QMESH: Infant NewbornRMESH: HemangioblastsAntigens CD45Cell DifferentiationAnimal ModelsCadherinsFetal BloodCell biologyAdult Stem CellsHaematopoiesisPhenotypeconditioned mediummedicine.anatomical_structureCord bloodMedicineHemangioblastCD146Cellular TypesAnimals; Antigens CD; Antigens CD34; Antigens CD45; Cadherins; Cell Adhesion; Cell Differentiation; Cell Shape; Cells Cultured; Culture Media Conditioned; Fetal Blood; Hemangioblasts; Hematopoiesis; Hepatocytes; Humans; Immunophenotyping; Infant Newborn; Mice; Phenotype; Agricultural and Biological Sciences (all); Biochemistry Genetics and Molecular Biology (all); Medicine (all)Research ArticleHumanMESH: Cells Culturedendothelial lineage; murine hepatocytes; conditioned mediumMESH: Cell DifferentiationMESH: ImmunophenotypingEndotheliumHemangioblastsScienceMESH: Antigens CD45[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologyMESH: PhenotypeImmunophenotypingMESH: Cell Adhesion03 medical and health sciencesModel OrganismsAntigens CDCell AdhesionmedicineAnimalsHumansMESH: Cell ShapeMESH: Fetal BloodProgenitor cellBiologyCell ShapeMESH: Mice030304 developmental biologyBiochemistry Genetics and Molecular Biology (all)MESH: HumansAnimalInfant NewbornMESH: Antigens CD34Hematopoietic Stem CellsHemangioblastHematopoiesisAgricultural and Biological Sciences (all)Culture Media ConditionedImmunologyHepatocytesCadherinLeukocyte Common Antigens030217 neurology & neurosurgeryDevelopmental BiologyPLoS ONE
researchProduct

Impact of Glutathione Peroxidase-1 Deficiency on Macrophage Foam Cell Formation and Proliferation: Implications for Atherogenesis

2013

Clinical and experimental evidence suggests a protective role for the antioxidant enzyme glutathione peroxidase-1 (GPx-1) in the atherogenic process. GPx-1 deficiency accelerates atherosclerosis and increases lesion cellularity in ApoE(-/-) mice. However, the distribution of GPx-1 within the atherosclerotic lesion as well as the mechanisms leading to increased macrophage numbers in lesions is still unknown. Accordingly, the aims of the present study were (1) to analyze which cells express GPx-1 within atherosclerotic lesions and (2) to determine whether a lack of GPx-1 affects macrophage foam cell formation and cellular proliferation. Both in situ-hybridization and immunohistochemistry of l…

CD36 AntigensMAPK/ERK pathwayMouseMitogen-Activated Protein Kinase 3lcsh:MedicineGene ExpressionSignal transductionCardiovascularMiceMolecular cell biologyGlutathione Peroxidase GPX1lcsh:ScienceIn Situ HybridizationFoam cellMice KnockoutMitogen-Activated Protein Kinase 1Mitogen-Activated Protein Kinase 3MultidisciplinaryReverse Transcriptase Polymerase Chain ReactionKinaseSignaling cascadesScavenger Receptors Class AAnimal ModelsImmunohistochemistryLipoproteins LDLMedicineFemaleSignal transductionResearch ArticleMacrophage colony-stimulating factorMAPK signaling cascadesBlotting WesternBiologyCell GrowthModel OrganismsApolipoproteins EVascular BiologyAnimalsHumansProtein kinase ABiologyCell ProliferationGlutathione PeroxidaseMacrophage Colony-Stimulating Factorlcsh:RAtherosclerosisMolecular biologyMacrophages Peritoneallcsh:QMacrophage proliferationFoam CellsPLoS ONE
researchProduct

Oro-gustatory perception of dietary lipids and calcium signaling in taste bud cells are altered in nutritionally obesity-prone Psammomys obesus.

2013

Since the increasing prevalence of obesity is one of the major health problems of the modern era, understanding the mechanisms of oro-gustatory detection of dietary fat is critical for the prevention and treatment of obesity. We have conducted the present study on Psammomys obesus, the rodent desert gerbil which is a unique polygenic natural animal model of obesity. Our results show that obese animals exhibit a strong preference for lipid solutions in a two-bottle test. Interestingly, the expression of CD36, a lipido-receptor, in taste buds cells (TBC), isolated from circumvallate papillae, was decreased at mRNA level, but remained unaltered at protein level, in obese animals. We further st…

CD36 AntigensMaleTasteAnatomy and PhysiologyCD36BiochemistryCalcium in biologyFatschemistry.chemical_compoundMolecular Cell BiologySignaling in Cellular ProcessesMembrane Receptor Signalingchemistry.chemical_classificationMultidisciplinarybiologyQRTaste PerceptionTaste BudsLipidsSensory SystemsLipid SignalingCytochemistryThapsigarginMedicinePsammomysDisease SusceptibilityIntracellularResearch ArticleSignal Transductionmedicine.medical_specialtyThapsigarginClinical Research DesignLinoleic acidScienceLinoleic AcidFood PreferencesInternal medicinemedicineAnimalsCalcium SignalingObesityAnimal Models of DiseaseBiologyNutritionCell MembraneFatty acidProteinsbiology.organism_classificationLipid MetabolismDietary FatsGustatory SystemTransmembrane ProteinsEndocrinologyMetabolismchemistryGene Expression Regulationbiology.proteinGerbillinaeMembrane CompositionNeurosciencePLoS ONE
researchProduct

Dysfunction of Oskyddad causes Harlequin-type ichthyosis-like defects in Drosophila melanogaster.

2020

Prevention of desiccation is a constant challenge for terrestrial organisms. Land insects have an extracellular coat, the cuticle, that plays a major role in protection against exaggerated water loss. Here, we report that the ABC transporter Oskyddad (Osy)—a human ABCA12 paralog—contributes to the waterproof barrier function of the cuticle in the fruit fly Drosophila melanogaster. We show that the reduction or elimination of Osy function provokes rapid desiccation. Osy is also involved in defining the inward barrier against xenobiotics penetration. Consistently, the amounts of cuticular hydrocarbons that are involved in cuticle impermeability decrease markedly when Osy activity is reduced. …

Cancer ResearchLife CyclesEmbryologyMutantCell MembranesATP-binding cassette transporterQH426-470Biochemistry0302 clinical medicineLarvaeAnimal WingsLoss of Function MutationMedicine and Health SciencesDrosophila ProteinsAnimal AnatomyGenetics (clinical)Barrier functionSkin0303 health sciencesbiologyDrosophila MelanogasterEukaryotaAnimal ModelsHarlequin IchthyosisLipidsCell biologyInsectsExperimental Organism SystemsEmbryology and OrganogenesisDrosophilaDrosophila melanogasterCellular Structures and OrganellesAnatomyIntegumentary SystemEmbryologie et organogenèseDrosophila ProteinAutre (Sciences du Vivant)Research Article[SDV.OT]Life Sciences [q-bio]/Other [q-bio.OT]ArthropodaResearch and Analysis Methods03 medical and health sciencesModel OrganismsExtracellularGeneticsAnimalsABCA12DesiccationMolecular BiologyEcology Evolution Behavior and Systematics030304 developmental biologyEmbryosfungiOrganismsBiology and Life SciencesCell Biologybiology.organism_classificationInvertebrates[SDV.BDD.EO]Life Sciences [q-bio]/Development Biology/Embryology and Organogenesisbiology.proteinAnimal StudiesATP-Binding Cassette TransportersEpidermisZoology030217 neurology & neurosurgeryIchthyosis LamellarDevelopmental BiologyPLoS Genetics
researchProduct

Experimental evolution of an oncolytic vesicular stomatitis virus with increased selectivity for p53-deficient cells

2014

Experimental evolution has been used for various biotechnological applications including protein and microbial cell engineering, but less commonly in the field of oncolytic virotherapy. Here, we sought to adapt a rapidly evolving RNA virus to cells deficient for the tumor suppressor gene p53, a hallmark of cancer cells. To achieve this goal, we established four independent evolution lines of the vesicular stomatitis virus (VSV) in p53-knockout mouse embryonic fibroblasts (p53-/- MEFs) under conditions favoring the action of natural selection. We found that some evolved viruses showed increased fitness and cytotoxicity in p53-/- cells but not in isogenic p53+/+ cells, indicating gene-specifi…

Cancer TreatmentVirus OncolíticosProtein EngineeringMiceMedicine and Health SciencesMacromolecular EngineeringMice KnockoutOncolytic VirotherapyMultidisciplinaryQProteína p53 Supresora de TumorRNeoplasias de la Mama3. Good healthOncolytic VirusesOncologyVesicular stomatitis virusColonic NeoplasmsMedicineFemaleVesicular StomatitisResearch ArticleBiotechnologyDirected EvolutionEvolutionary ProcessesTumor suppressor geneScienceBioengineeringBreast NeoplasmsBiologyMicrobiologyViral EvolutionVirusVesicular StomatitisVirologyCell Line TumorGeneticsAnimalsHumansEvolutionary BiologyNeoplasias del ColonBiology and Life SciencesRNA virusVesiculovirusbiology.organism_classificationVirologyOrganismal EvolutionOncolytic virusAnimal Models of InfectionArtificial SelectionSynthetic BioengineeringViruses and CancerCell cultureMicrobial EvolutionCancer cellCancer researchDirected Molecular EvolutionTumor Suppressor Protein p53
researchProduct

Circuit Specific Functions of Cannabinoid CB1 Receptor in the Balance of Investigatory Drive and Exploration

2011

Well balanced novelty seeking and exploration are fundamental behaviours for survival and are found to be dysfunctional in several psychiatric disorders. Recent studies suggest that the endocannabinoid (eCB) system is an important control system for investigatory drive. Pharmacological treatment of rodents with cannabinergic drugs results in altered social and object investigation. Interestingly, contradictory results have been obtained, depending on the treatment, drug concentration and experimental conditions. The cannabinoid type 1 (CB1) receptor, a central component of the eCB system, is predominantly found at the synapses of two opposing neuronal populations, i.e. on inhibitory GABAerg…

Cannabinoid receptorMousemedicine.medical_treatmentScienceGlutamic AcidNeural HomeostasisMice TransgenicBiologyMedium spiny neuronSynaptic Transmissiongamma-Aminobutyric acidGlutamatergicBehavioral NeuroscienceMiceModel OrganismsReceptor Cannabinoid CB1medicineGeneticsAnimalsGABAergic NeuronsSocial BehaviorBiologygamma-Aminobutyric AcidPsychiatryNeuronsMultidisciplinaryBehavior AnimalMood DisordersQRAnimal ModelsNeurotransmittersEndocannabinoid systemMice Inbred C57BLMental Healthnervous systemDopamine receptorMaladjustmentExploratory BehaviorGABAergicMedicineCannabinoidNeuroscienceAnimal Geneticsmedicine.drugResearch ArticleNeurosciencePLoS ONE
researchProduct