Search results for "AP1"

showing 10 items of 69 documents

The Role of Nrf2 and PPARγ in the Improvement of Oxidative Stress in Hypertension and Cardiovascular Diseases

2020

Reactive oxygen species are an important element of redox regulation in cells and tissues. During physiological processes, molecules undergo chemical changes caused by reduction and oxidation reactions. Free radicals are involved in interactions with other molecules, leading to oxidative stress. Oxidative stress works two ways depending on the levels of oxidizing agents and products. Excessive action of oxidizing agents damages biomolecules, while a moderate physiological level of oxidative stress (oxidative eustress) is necessary to control life processes through redox signaling required for normal cellular operation. High levels of reactive oxygen species (ROS) mediate pathological change…

0301 basic medicineCell signalingNF-E2-Related Factor 2PhysiologyBlood PressureReviewOxidative phosphorylationmedicine.disease_cause03 medical and health sciences0302 clinical medicinemedicineAnimalsHumansProtein kinase BPI3K/AKT/mTOR pathwaychemistry.chemical_classificationReactive oxygen speciesKelch-Like ECH-Associated Protein 1ChemistryGeneral MedicineKEAP1Antioxidant Response ElementsNFE2L2Cell biologyPPAR gammaOxidative Stress030104 developmental biologyCardiovascular DiseasesHypertensionReactive Oxygen Species030217 neurology & neurosurgeryOxidative stressSignal TransductionPhysiological Research
researchProduct

A Drosophila model of GDAP1 function reveals the involvement of insulin signalling in the mitochondria-dependent neuromuscular degeneration

2017

[EN] Charcot-Marie-Tooth disease is a rare peripheral neuropathy for which there is no specific treatment. Some forms of Charcot-Marie-Tooth are due to mutations in the GDAP1 gene. A striking feature of mutations in GDAP1 is that they have a variable clinical manifestation, according to disease onset and progression, histology and mode of inheritance. Studies in cellular and animal models have revealed a role of GDAP1 in mitochondrial morphology and distribution, calcium homeostasis and oxidative stress. To get a better understanding of the disease mechanism we have generated models of over-expression and RNA interference of the Drosophila Gdapl gene. In order to get an overview about the c…

0301 basic medicineCharcot-Marie-Toothmedicine.medical_treatmentNerve Tissue ProteinsGDAP1MitochondrionBiologymedicine.disease_cause03 medical and health sciencesCharcot-Marie-Tooth DiseaseRNA interferenceGene expressionBIOQUIMICA Y BIOLOGIA MOLECULARmedicineAnimalsDrosophila ProteinsHumansInsulinMolecular BiologyGeneticsMechanism (biology)InsulinNeurodegenerationLipid Metabolismmedicine.diseaseUp-RegulationMitochondriaCell biology030104 developmental biologyMetabolomeCarbohydrate MetabolismMolecular MedicineDrosophilaRNA InterferenceOxidative stressFunction (biology)Signal TransductionBiochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
researchProduct

Autophagy interferes with human cytomegalovirus genome replication, morphogenesis, and progeny release.

2020

Viral infections are often accompanied by the induction of autophagy as an intrinsic cellular defense mechanism. Herpesviruses have developed strategies to evade autophagic degradation and to manipulate autophagy of the host cells to their benefit. Here we addressed the role of macroautophagy/autophagy in human cytomegalovirus replication and for particle morphogenesis. We found that proteins of the autophagy machinery localize to cytoplasmic viral assembly compartments and enveloped virions in the cytoplasm. Surprisingly, the autophagy receptor SQSTM1/p62 was also found to colocalize with HCMV capsids in the nucleus of infected cells. This finding indicates that the autophagy machinery int…

0301 basic medicineHuman cytomegalovirusCytoplasmEpstein-Barr Virus InfectionsvirusesCytomegalovirusBiology03 medical and health sciencesMultiplicity of infectionmedicineXenophagyAutophagyMorphogenesisHumansMolecular BiologyCytopathic effect030102 biochemistry & molecular biologyAutophagyCell BiologyBECN1biochemical phenomena metabolism and nutritionFibroblastsmedicine.diseaseVirus ReleaseCell biology030104 developmental biologyCytomegalovirus InfectionsMAP1LC3AResearch PaperAutophagy
researchProduct

NKG2D stimulation of CD8(+) T cells during priming promotes their capacity to produce cytokines in response to viral infection in mice

2017

NKG2D is an activating receptor that is expressed on most cytotoxic cells of the immune system, including NK cells, γδ and CD8+ T cells. It is still a matter of debate whether and how NKG2D mediates priming of CD8+ T cells in vivo, due to a lack of studies where NKG2D is eliminated exclusively in these cells. Here we studied the impact of NKG2D on effector CD8+ T-cell formation. NKG2D-deficiency that is restricted to murine CD8+ T cells did not impair antigen-specific T-cell expansion following mCMV and LCMV infection, but reduced their capacity to produce cytokines. Upon infection, conventional dendritic cells induce NKG2D ligands, which drive cytokine production on CD8+ T cells via the Da…

0301 basic medicineImmunologyCytokines ; Dap10 ; Effector CD8+ T cells ; LCMV ; NKG2D ; mCMVchemical and pharmacologic phenomenaBiologyCD8+ T cellsNKG2D03 medical and health sciencesInterleukin 21Immunology and AllergyCytotoxic T cellIL-2 receptorAntigen-presenting cellZAP70BIOMEDICINE AND HEALTHCARE. Basic Medical Sciences.hemic and immune systemsNKG2DNatural killer T cellmCMVbiological factors3. Good health030104 developmental biologyCostimulationPrimingImmunologyInterleukin 12CytokinesBIOMEDICINA I ZDRAVSTVO. Temeljne medicinske znanosti.European journal of immunology
researchProduct

Dysfunctional mitochondrial fission impairs cell reprogramming

2016

We have recently shown that mitochondrial fission is induced early in reprogramming in a Drp1-dependent manner; however, the identity of the factors controlling Drp1 recruitment to mitochondria was unexplored. To investigate this, we used a panel of RNAi targeting factors involved in the regulation of mitochondrial dynamics and we observed that MiD51, Gdap1 and, to a lesser extent, Mff were found to play key roles in this process. Cells derived from Gdap1-null mice were used to further explore the role of this factor in cell reprogramming. Microarray data revealed a prominent down-regulation of cell cycle pathways in Gdap1-null cells early in reprogramming and cell cycle profiling uncovered…

0301 basic medicineMicroarray analysis techniquescell reprogrammingmitochondrial fissionCellCell BiologyBiologyMitochondrionCell cyclepluripotencyCell biology03 medical and health sciencesiPS cells030104 developmental biology0302 clinical medicinemedicine.anatomical_structureRNA interferencemedicineMitochondrial fissionGdap1Induced pluripotent stem cellMolecular BiologyReprogramming030217 neurology & neurosurgeryDevelopmental Biology
researchProduct

BAG3 regulates total MAP1LC3B protein levels through a translational but not transcriptional mechanism

2015

Autophagy is mainly regulated by post-translational and lipid modifications of ATG proteins. In some scenarios, the induction of autophagy is accompanied by increased levels of certain ATG mRNAs such as MAP1LC3B/LC3B, ATG5 or ATG12. However, little is known about the regulation of ATG protein synthesis at the translational level. The cochaperone of the HSP70 system BAG3 (BCL2-associated athanogene 3) has been associated to LC3B lipidation through an unknown mechanism. In the present work, we studied how BAG3 controls autophagy in HeLa and HEK293 cells. Our results showed that BAG3 regulates the basal amount of total cellular LC3B protein by controlling its mRNA translation. This effect was …

0301 basic medicineProteasome Endopeptidase ComplexTranscription GeneticATG8ATG5BiologyBAG3ATG1203 medical and health sciences0302 clinical medicineProtein biosynthesisHumansRNA MessengerMolecular BiologyAdaptor Proteins Signal TransducingGeneticsGene knockdownAutophagyCell BiologyLipidsBasic Research PaperCell biologyHEK293 Cells030104 developmental biologyProtein BiosynthesisProteolysisApoptosis Regulatory ProteinsLysosomesMicrotubule-Associated ProteinsMAP1LC3B030217 neurology & neurosurgeryHeLa Cells
researchProduct

Molecular evolution of antioxidant and hypoxia response in long-lived, cancer-resistant blind mole rats: The Nrf2-Keap1 pathway.

2015

The Nrf2-Keap1 pathway is crucial for the cellular antioxidant and hypoxia response in vertebrates. Deciphering its modifications in hypoxia-adapted animals will help understand its functionality under environmental stress and possibly allow for knowledge transfer into biomedical research. The blind mole rat Spalax, a long-lived cancer-resistant rodent, lives in burrows underground and is adapted to severely hypoxic conditions. Here we have conducted a bioinformatical survey of Spalax core genes from the Nrf2-Keap1 pathway on the coding sequence level in comparison to other hypoxia-tolerant and -sensitive rodents. We find strong sequence conservation across all genes, illustrating the pathw…

0301 basic medicineRodentSpalaxNF-E2-Related Factor 2Molecular Sequence DataConserved sequenceEvolution Molecular03 medical and health sciencesbiology.animalNeoplasmsGene expressionGeneticsAnimalsAmino Acid SequencePeptide sequenceGeneConserved SequenceGeneticsKelch-Like ECH-Associated Protein 1030102 biochemistry & molecular biologybiologyMole RatsIntracellular Signaling Peptides and ProteinsGeneral Medicinebiology.organism_classificationPhenotypeKEAP1Cell HypoxiaRatsOxidative Stress030104 developmental biologySequence AlignmentGene
researchProduct

Induction of Chromosome Instability by Activation of Yes-Associated Protein and Forkhead Box M1 in Liver Cancer

2016

Background & Aims Many different types of cancer cells have chromosome instability. The hippo pathway leads to phosphorylation of the transcriptional activator yes-associated protein 1 (YAP1, YAP), which regulates proliferation and has been associated with the development of liver cancer. We investigated the effects of hippo signaling via YAP on chromosome stability and hepatocarcinogenesis in humans and mice. Methods We analyzed transcriptome data from 242 patients with hepatocellular carcinoma (HCC) to search for gene signatures associated with chromosomal instability (CIN); we investigated associations with overall survival time and cancer recurrence using Kaplan–Meier curves. We analyze…

0301 basic medicineTime FactorsMuscle ProteinsKaplan-Meier Estimatemedicine.disease_causeChromosome instabilityYAP1Liver NeoplasmsGastroenterologyTEA Domain Transcription FactorsHep G2 CellsPrognosisDNA-Binding ProteinsGene Expression Regulation NeoplasticPhenotypeHippo signalingRNA InterferenceSignal TransductionCarcinoma HepatocellularPorphyrinsAntineoplastic AgentsMice TransgenicBiologyTransfection03 medical and health sciencesChromosomal InstabilitymedicineAnimalsHumansGene silencingGenetic Predisposition to DiseaseAdaptor Proteins Signal TransducingHippo signaling pathwayHepatologyGene Expression ProfilingForkhead Box Protein M1VerteporfinYAP-Signaling ProteinsHCCSPhosphoproteinsThiostreptonMolecular biologyMice Inbred C57BLDisease Models Animal030104 developmental biologyTissue Array AnalysisFOXM1Cancer researchTranscriptomeCarcinogenesisTranscription FactorsGastroenterology
researchProduct

"Table 32" of "Investigations of anisotropic flow using multi-particle azimuthal correlations in pp, p-Pb, Xe-Xe, and Pb-Pb collisions at the LHC"

2019

$v_3\{2\}$ with $|\Delta \eta| > 1.0$ in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

5020.0High Energy Physics::ExperimentPb Pb --> CHARGED Xv32Gap10Nuclear Experiment
researchProduct

"Table 11" of "Investigations of anisotropic flow using multi-particle azimuthal correlations in pp, p-Pb, Xe-Xe, and Pb-Pb collisions at the LHC"

2019

$v_3\{2\}$ with $|\Delta \eta| > 1.0$ in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

5020.0p Pb --> CHARGED XHigh Energy Physics::Experimentv32Gap10Nuclear Experiment
researchProduct