Search results for "ARN"

showing 10 items of 8344 documents

Robust link prediction in criminal networks: A case study of the Sicilian Mafia

2020

Abstract Link prediction exercises may prove particularly challenging with noisy and incomplete networks, such as criminal networks. Also, the link prediction effectiveness may vary across different relations within a social group. We address these issues by assessing the performance of different link prediction algorithms on a mafia organization. The analysis relies on an original dataset manually extracted from the judicial documents of operation “Montagna”, conducted by the Italian law enforcement agencies against individuals affiliated with the Sicilian Mafia. To run our analysis, we extracted two networks: one including meetings and one recording telephone calls among suspects, respect…

0209 industrial biotechnologyComputer scienceSettore SPS/12 - SOCIOLOGIA GIURIDICA DELLA DEVIANZA E MUTAMENTO SOCIALENetwork science02 engineering and technologyMachine learningcomputer.software_genreCriminal networksSocial groupSocial network analysis020901 industrial engineering & automationArtificial IntelligenceLink prediction in uncertain graphs0202 electrical engineering electronic engineering information engineeringLink (knot theory)Settore INF/01 - Informaticabusiness.industryGeneral EngineeringLaw enforcementCriminal networks; Link prediction in uncertain graphs; Network science; Social network analysisSettore ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI16. Peace & justicelanguage.human_languageComputer Science ApplicationslanguageTopological graph theory020201 artificial intelligence & image processingArtificial intelligencebusinessSiciliancomputerExpert Systems with Applications
researchProduct

Multiple Fault Diagnosis of Electric Powertrains Under Variable Speeds Using Convolutional Neural Networks

2018

Electric powertrains are widely used in automotive and renewable energy industries. Reliable diagnosis for defects in the critical components such as bearings, gears and stator windings, is important to prevent failures and enhance the system reliability and power availability. Most of existing fault diagnosis methods are based on specific characteristic frequencies to single faults at constant speed operations. Once multiple faults occur in the system, such a method may not detect the faults effectively and may give false alarms. Furthermore, variable speed operations render a challenge of analysing nonstationary signals. In this work, a deep learning-based fault diagnosis method is propos…

0209 industrial biotechnologyComputer sciencebusiness.industryPowertrainStatorDeep learningReliability (computer networking)020208 electrical & electronic engineeringControl engineeringHardware_PERFORMANCEANDRELIABILITY02 engineering and technologyFault (power engineering)Convolutional neural networklaw.inventionPower (physics)020901 industrial engineering & automationlaw0202 electrical engineering electronic engineering information engineeringArtificial intelligencebusinessInduction motor2018 XIII International Conference on Electrical Machines (ICEM)
researchProduct

Assembly Assistance System with Decision Trees and Ensemble Learning

2021

This paper presents different prediction methods based on decision tree and ensemble learning to suggest possible next assembly steps. The predictor is designed to be a component of a sensor-based assembly assistance system whose goal is to provide support via adaptive instructions, considering the assembly progress and, in the future, the estimation of user emotions during training. The assembly assistance station supports inexperienced manufacturing workers, but it can be useful in assisting experienced workers, too. The proposed predictors are evaluated on the data collected in experiments involving both trainees and manufacturing workers, as well as on a mixed dataset, and are compared …

0209 industrial biotechnologyDecision support systemComputer scienceDecision treetraining stations02 engineering and technologyTP1-1185Machine learningcomputer.software_genreBiochemistryArticleAnalytical Chemistry020901 industrial engineering & automationPrediction methodsComponent (UML)decision tree0202 electrical engineering electronic engineering information engineeringassembly assistance systemsElectrical and Electronic EngineeringInstrumentationbusiness.industryChemical technologyNoveltyContrast (statistics)Ensemble learningAtomic and Molecular Physics and Opticsensemble learning020201 artificial intelligence & image processingSupport systemArtificial intelligencebusinesscomputerdecision support systemsSensors
researchProduct

Collaborative Systems and Environments for Future Working Life: Towards the Integration of Workers, Systems and Manufacturing Environments

2017

While the industrial sector in Europe was previously strongly based on mass production technology, it is now moving towards highly customised products and thus to lot-size-one production. The change in production paradigm is strengthened by the emerging technologies. In small- and medium-sized enterprises (SMEs), this means, for example, the increased use of modern digital manufacturing tools, new additive manufacturing processes and novel engineering intelligence solutions. As a direct result, workers need to develop new skills and competences to effective work. From an educational perspective, it is especially critical that people with few prior successful experiences with fully applying …

0209 industrial biotechnologyEngineeringProcess managementKnowledge managementEmerging technologiesbusiness.industryLearning environment05 social sciences050301 education02 engineering and technologycomputer.software_genre020901 industrial engineering & automationWork (electrical)Secondary sector of the economyVirtual learning environmentProduction (economics)CollaborationDigital manufacturingbusiness0503 educationcomputer
researchProduct

Finite-time stability and stabilisation for a class of nonlinear systems with time-varying delay

2014

This paper is concerned with the problems of finite-time stability FTS and finite-time stabilisation for a class of nonlinear systems with time-varying delay, which can be represented by Takagi–Sugeno fuzzy system. Some new delay-dependent FTS conditions are provided and applied to the design problem of finite-time fuzzy controllers. First, based on an integral inequality and a fuzzy Lyapunov–Krasovskii functional, a delay-dependent FTS criterion is proposed for open-loop fuzzy system by introducing some free fuzzy weighting matrices, which are less conservative than other existing ones. Then, the parallel distributed compensation controller is designed to ensure FTS of the time-delay fuzzy…

0209 industrial biotechnologyEngineeringfinite-time stabilisation; finite-time stability; fuzzy control; nonlinear system; time-delay system; Control and Systems Engineering; Theoretical Computer Science; Computer Science Applications1707 Computer Vision and Pattern RecognitionStability (learning theory)fuzzy controltime-delay system02 engineering and technologynonlinear systemFuzzy logicCompensation (engineering)Theoretical Computer Science020901 industrial engineering & automationControl theory0202 electrical engineering electronic engineering information engineeringfinite-time stabilisationfinite-time stabilityAdaptive neuro fuzzy inference systembusiness.industryComputer Science Applications1707 Computer Vision and Pattern RecognitionFuzzy control systemComputer Science ApplicationsWeightingNonlinear systemControl and Systems Engineering020201 artificial intelligence & image processingbusiness
researchProduct

Health Indicator for Low-Speed Axial Bearings Using Variational Autoencoders

2020

This paper proposes a method for calculating a health indicator (HI) for low-speed axial rolling element bearing (REB) health assessment by utilizing the latent representation obtained by variational inference using Variational Autoencoders (VAEs), trained on each speed reference in the dataset. Further, versatility is added by conditioning on the speed, extending the VAE to a conditional VAE (CVAE), thereby incorporating all speeds in a single model. Within the framework, the coefficients of autoregressive (AR) models are used as features. The dimensionality reduction inherent in the proposed method lowers the need of expert knowledge to design good condition indicators. Moreover, the sugg…

0209 industrial biotechnologyGeneral Computer Sciencegenerative modelsComputer sciencecondition monitoring02 engineering and technologyLatent variableunsupervised learningFault detection and isolationBearing fault detection020901 industrial engineering & automationVDP::Teknologi: 500::Maskinfag: 5700202 electrical engineering electronic engineering information engineeringGeneral Materials Sciencevariational autoencoderconditional variational autoencoderbusiness.industryDimensionality reduction020208 electrical & electronic engineeringGeneral EngineeringPattern recognitionData pointAutoregressive modelRolling-element bearingFalse alarmArtificial intelligencelcsh:Electrical engineering. Electronics. Nuclear engineeringbusinesslcsh:TK1-9971IEEE Access
researchProduct

Online fitted policy iteration based on extreme learning machines

2016

Reinforcement learning (RL) is a learning paradigm that can be useful in a wide variety of real-world applications. However, its applicability to complex problems remains problematic due to different causes. Particularly important among these are the high quantity of data required by the agent to learn useful policies and the poor scalability to high-dimensional problems due to the use of local approximators. This paper presents a novel RL algorithm, called online fitted policy iteration (OFPI), that steps forward in both directions. OFPI is based on a semi-batch scheme that increases the convergence speed by reusing data and enables the use of global approximators by reformulating the valu…

0209 industrial biotechnologyInformation Systems and ManagementRadial basis function networkArtificial neural networkComputer sciencebusiness.industryStability (learning theory)02 engineering and technologyMachine learningcomputer.software_genreManagement Information Systems020901 industrial engineering & automationArtificial IntelligenceBellman equation0202 electrical engineering electronic engineering information engineeringBenchmark (computing)Reinforcement learning020201 artificial intelligence & image processingArtificial intelligencebusinesscomputerSoftwareExtreme learning machineKnowledge-Based Systems
researchProduct

Bio-inspired evolutionary dynamics on complex networks under uncertain cross-inhibitory signals

2019

Given a large population of agents, each agent has three possiblechoices between option 1 or 2 or no option. The two options are equally favorable and the population has to reach consensus on one of the two options quickly and in a distributed way. The more popular an option is, the more likely it is to be chosen by uncommitted agents. Agents committed to one option can be attracted by those committed to the other option through a cross-inhibitory signal. This model originates in the context of honeybee swarms, and we generalize it to duopolistic competition and opinion dynamics. The contributions of this work include (i) the formulation of a model to explain the behavioral traits of the ho…

0209 industrial biotechnologyMathematical optimizationCollective behaviorAsymptotic stabilityComputer sciencePopulationContext (language use)02 engineering and technologyMachine learningcomputer.software_genreNetwork topologyCompetition (economics)020901 industrial engineering & automationNonlinear systems0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringEvolutionary dynamicseducationAbsolute stabilityeducation.field_of_studybusiness.industry020208 electrical & electronic engineeringAgentsDeadlock (game theory)Complex networkNetwork topologiesControl and Systems EngineeringArtificial intelligencebusinessDecision makingcomputerAutomatica
researchProduct

Game Theoretic Decentralized Feedback Controls in Markov Jump Processes

2017

This paper studies a decentralized routing problem over a network, using the paradigm of mean-field games with large number of players. Building on a state-space extension technique, we turn the problem into an optimal control one for each single player. The main contribution is an explicit expression of the optimal decentralized control which guarantees the convergence both to local and to global equilibrium points. Furthermore, we study the stability of the system also in the presence of a delay which we model using an hysteresis operator. As a result of the hysteresis, we prove existence of multiple equilibrium points and analyze convergence conditions. The stability of the system is ill…

0209 industrial biotechnologyMathematical optimizationDecentralized routing policies; Hysteresis; Inverse control problem; Mean-field games; Optimal control; Control and Optimization; Management Science and Operations Research; Applied MathematicsControl and OptimizationStability (learning theory)02 engineering and technologyManagement Science and Operations ResearchMean-field games01 natural sciencesDecentralized routing policie020901 industrial engineering & automationControl theorySettore MAT/05 - Analisi MatematicaMean-field gameConvergence (routing)0101 mathematicsMean field gamesMathematicsEquilibrium pointSettore SECS-S/06 - Metodi mat. dell'economia e Scienze Attuariali e FinanziarieDecentralized routing policies; Hysteresis; Inverse control problem; Mean-field games; Optimal controlApplied MathematicsHysteresis010102 general mathematics[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]Optimal controlOptimal control Mean-field games Inverse control problem Decentralized routing policies HysteresisDecentralised systemOptimal control Mean-field games Inverse control problem Decentralized routing policies HysteresisExpression (mathematics)Optimal controlTheory of computationDecentralized routing policiesHysteresiInverse control problemRouting (electronic design automation)Settore MAT/09 - Ricerca Operativa
researchProduct

A Hierarchical Learning Scheme for Solving the Stochastic Point Location Problem

2012

Published version of a chapter in the book: Advanced Research in Applied Artificial Intelligence. Also available from the publisher at: http://dx.doi.org/10.1007/978-3-642-31087-4_78 This paper deals with the Stochastic-Point Location (SPL) problem. It presents a solution which is novel in both philosophy and strategy to all the reported related learning algorithms. The SPL problem concerns the task of a Learning Mechanism attempting to locate a point on a line. The mechanism interacts with a random environment which essentially informs it, possibly erroneously, if the unknown parameter is on the left or the right of a given point which also is the current guess. The first pioneering work […

0209 industrial biotechnologyMathematical optimizationOptimization problemBinary treeDiscretizationLearning automataComputer sciencelearning automataVDP::Technology: 500::Information and communication technology: 5500102 computer and information sciences02 engineering and technologyRandom walk01 natural sciencesdicretized learningStochastic-Point problemcontrolled Random WalkVDP::Mathematics and natural science: 400::Information and communication science: 420::Knowledge based systems: 425020901 industrial engineering & automation010201 computation theory & mathematicsLine (geometry)Convergence (routing)Point (geometry)Algorithm
researchProduct