Search results for "ASTROPHYSICS"

showing 10 items of 8341 documents

The BepiColombo MORE gravimetry and rotation experiments with the ORBIT14 software

2016

The BepiColombo mission to Mercury is an ESA/JAXA cornerstone mission, consisting of two spacecraft in orbit around Mercury addressing several scientific issues. One spacecraft is the Mercury Planetary Orbiter, with full instrumentation to perform radio science experiments. Very precise radio tracking from Earth, on-board accelerometer and optical measurements will provide large data sets. From these it will be possible to study the global gravity field of Mercury and its tidal variations, its rotation state and the orbit of its centre of mass. With the gravity field and rotation state, it is possible to constrain the internal structure of the planet. With the orbit of Mercury, it is possib…

010504 meteorology & atmospheric sciencesAccelerometer01 natural scienceslaw.inventionmethods: numericalGravitationOrbiterMethods: numerical; Planets and satellites: individual: Mercury; Space vehicles: instruments; Astronomy and Astrophysics; Space and Planetary ScienceGravitational fieldmethods: numerical – space vehicles: instruments – planets and satellites: individual: Mercurylaw0103 physical sciencesGravimetryAerospace engineeringspace vehicles: instrumentsSettore MAT/07 - Fisica Matematica010303 astronomy & astrophysics0105 earth and related environmental sciencesRemote sensingRadio SciencePhysicsSpacecraftbusiness.industryAstronomy and AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsLove numberAstrophysics::Earth and Planetary Astrophysicsbusinessplanets and satellites: individual: Mercury
researchProduct

Cosmic-Ray Anisotropies in Right Ascension Measured by the Pierre Auger Observatory

2020

We present measurements of the large-scale cosmic-ray anisotropies in right ascension, using data collected by the surface detector array of the Pierre Auger Observatory over more than 14 years. We determine the equatorial dipole component, ~d⊥, through a Fourier analysis in right ascension that includes weights for each event so as to account for the main detector-induced systematic effects. For the energies at which the trigger efficiency of the array is small, the “East-West” method is employed. Besides using the data from the array with detectors separated by 1500 m, we also include data from the smaller but denser sub-array of detectors with 750 m separation, which allows us to extend …

010504 meteorology & atmospheric sciencesAstronomyAstrophysicsAstrophysicsanisotropy [cosmic radiation]Amplitude01 natural sciencessurface [detector]010303 astronomy & astrophysicsRight ascensionastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsOBSERVATÓRIOSGalactic CenterAstrophysics::Instrumentation and Methods for AstrophysicsCosmic RaysAugerobservatoryAmplitudePhysics::Space PhysicsAstrophysics - High Energy Astrophysical PhenomenaExtragalactic cosmic rayAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic raycosmic radiation: anisotropyExtragalactic cosmic rayGalactic center0103 physical sciencesHigh Energy PhysicsPierre auger observatory0105 earth and related environmental sciencesPierre Auger Observatorydetector: surfaceFísicaAstronomy and AstrophysicsCosmic rayefficiency [trigger]GalaxyDipole* Automatic Keywords *Space and Planetary ScienceExperimental High Energy Physicstrigger: efficiencyddc:520galaxyDipoleObservatoryEnergy (signal processing)anisotropiesRight ascension[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Energy (signal processing)dipoleThe Astrophysical Journal
researchProduct

Diving below the spin-down limit: Constraints on gravitational waves from the energetic young pulsar PSR J0537-6910

2021

We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using NICER data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and is highly active with regards to glitches. Analyses of its long-term and inter-glitch braking indices provided intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz …

010504 meteorology & atmospheric sciencesAstronomyAstrophysicsEP/ T017325/101 natural sciencesrotationGeneral Relativity and Quantum CosmologyPSR J0537−6910neutron starsLuminosityGravitatational Waves PSR J0537−6910 LIGO VirgoHISTORYLIGOSupernova remnantneutron star010303 astronomy & astrophysicsgravitational waveQCQBpulsarPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/03N157BPhysics/dk/atira/pure/sustainabledevelopmentgoals/partnershipsGravitational waves neutron stars pulsarEPSRCPhysical Sciencesmoment: multipole[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenaGravitational wavedata analysis methodPSR J0537-6910Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsEphemeris1ST SEARCHGravitational wavesX-raySDG 17 - Partnerships for the GoalsPulsar0103 physical sciences/dk/atira/pure/subjectarea/asjc/1900/1912X-ray: emissiongravitational waves; pulsars; PSR J0537-6910; neutron starsSTFCAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesScience & TechnologyNeutron Star Interior Composition ExplorerR-MODEGravitational waveVirgopulsar: rotationRCUKAstronomy and AstrophysicsLIGONeutron starVIRGOSUPERNOVA REMNANTSpace and Planetary Sciencegravitational radiation: emissionpulsars/dk/atira/pure/subjectarea/asjc/3100/3103Gravitatational Waves[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

A Search for Ultra-high-energy Neutrinos from TXS 0506+056 Using the Pierre Auger Observatory

2020

Results of a search for ultra-high-energy neutrinos with the Pierre Auger Observatory from the direction of the blazar TXS 0506+056 are presented. They were obtained as part of the follow-up that stemmed from the detection of high-energy neutrinos and gamma rays with IceCube, Fermi-LAT, MAGIC, and other detectors of electromagnetic radiation in several bands. The Pierre Auger Observatory is sensitive to neutrinos in the energy range from 100 PeV to 100 EeV and in the zenith-angle range from θ = 60° to θ = 95°, where the zenith angle is measured from the vertical direction. No neutrinos from the direction of TXS 0506+056 have been found. The results were analyzed in three periods: One of 6 m…

010504 meteorology & atmospheric sciencesAstronomyAstrophysicspower spectrum7. Clean energy01 natural sciencesIceCubeObservatoryMAGIC (telescope)UHE Cosmic Rays010303 astronomy & astrophysicsHigh energy astrophysics Neutrino astrony Blazars Transient sources Active galaxiesHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEOBSERVATÓRIOSAstrophysics::Instrumentation and Methods for Astrophysicsneutrino: UHEUHE [neutrino]AugerobservatoryHigh energy astrophysics; Neutrino astronomy; Blazars; Transient sources; Active galaxiesNeutrino detectorNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaHigh energy astrophysicsradiation: electromagneticHigh-energy astronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGLASTblazar0103 physical sciencesNeutrinoHigh Energy PhysicsZenithAstrophysique0105 earth and related environmental sciencesPierre Auger ObservatoryFísicaAstronomy and AstrophysicsAstronomiesensitivityMAGICTransient sourcesSciences de l'espaceelectromagnetic [radiation]13. Climate actionSpace and Planetary Sciencegamma rayExperimental High Energy PhysicsActive galaxiesddc:520spectralNeutrino astronomy[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Blazars
researchProduct

Observational data and orbits of the asteroids discovered at the Baldone Observatory in 2015–2018

2020

AbstractThis paper is devoted to the discovery of 37 asteroids at the Baldone Astrophysical Observatory (MPC 069) from 2015 to 2018, and one of dynamically interesting Mars-crosser (MC) observed at the Baldone Astrophysical Observatory, namely 2008 LX16. In Baldone Observatory, was independently discovered the Near-Earth Object 2018 GE3 on the image of 13 April 2018. Also, the NEO 2006 VB14 was observed doing its astrometry and photometry. Moreover, we observed asteroids 1986 DA and 2014 LJ1. We computed orbits and analyzed the orbital evolution of these asteroids. 566 positions and photometric observations of NEO objects 345705 (2006 VB14) and 6178 (1986 DA) were obtained with Baldone Schm…

010504 meteorology & atmospheric sciencesAstronomyorbitsAstronomyQB1-991Astronomy and AstrophysicsAstrometryEphemeris01 natural sciencesAstrobiologySpace and Planetary ScienceAsteroidObservatory0103 physical sciencesminor planetsastrometryminor planets ; asteroids ; astrometryObservational studyasteroids: search010303 astronomy & astrophysicsGeology0105 earth and related environmental sciencesOpen Astronomy
researchProduct

Gravitational-wave Detection and Parameter Estimation for Accreting Black-hole Binaries and Their Electromagnetic Counterpart

2020

We study the impact of gas accretion on the orbital evolution of black-hole binaries initially at large separation in the band of the planned Laser Interferometer Space Antenna (LISA). We focus on two sources: (i)~stellar-origin black-hole binaries~(SOBHBs) that can migrate from the LISA band to the band of ground-based gravitational-wave observatories within weeks/months; and (ii) intermediate-mass black-hole binaries~(IMBHBs) in the LISA band only. Because of the large number of observable gravitational-wave cycles, the phase evolution of these systems needs to be modeled to great accuracy to avoid biasing the estimation of the source parameters. Accretion affects the gravitational-wave p…

010504 meteorology & atmospheric sciencesAstrophysics01 natural sciencesGeneral Relativity and Quantum Cosmology010303 astronomy & astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEAccretion (meteorology)Observableastro-ph.HE; astro-ph.HE; General Relativity and Quantum Cosmologygas: accretionblack holes gravitational wavesobservatoryInterferometrygravitational waves[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical Phenomenainterferometermedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsgravitational radiation: direct detectionelectromagnetic field: productionGeneral Relativity and Quantum Cosmologybinary: coalescencestatistical analysisSettore FIS/05 - Astronomia e Astrofisicagravitation: weak field0103 physical sciencesnumerical calculationsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLISAGravitational wavegravitational radiationOrder (ring theory)black hole: accretionAstronomy and Astrophysicsblack holesgravitational radiation detectorRedshiftBlack holeblack hole: binarySpace and Planetary ScienceSkygravitational radiation: emission[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-ray: detectorThe Astrophysical Journal
researchProduct

X-ray emission from young brown dwarfs in the Orion Nebula Cluster

2005

We use the sensitive X-ray data from the Chandra Orion Ultradeep Project (COUP) to study the X-ray properties of 34 spectroscopically-identified brown dwarfs with near-infrared spectral types between M6 and M9 in the core of the Orion Nebula Cluster. Nine of the 34 objects are clearly detected as X-ray sources. The apparently low detection rate is in many cases related to the substantial extinction of these brown dwarfs; considering only the BDs with $A_V \leq 5$ mag, nearly half of the objects (7 out of 16) are detected in X-rays. Our 10-day long X-ray lightcurves of these objects exhibit strong variability, including numerous flares. While one of the objects was only detected during a sho…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaExtinction (astronomy)Brown dwarfFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsStellar classificationAstrophysics01 natural sciencesSpectral linelaw.invention[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]law0103 physical sciencesOrion NebulaAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsAstrophysics (astro-ph)Astronomy and AstrophysicsEffective temperatureStarsSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsFlare
researchProduct

A coronal explosion on the flare star CN Leonis

2008

We present simultaneous high-temporal and high-spectral resolution observations at optical and soft X-ray wavelengths of the nearby flare star CN Leo. During our observing campaign a major flare occurred, raising the star's instantaneous energy output by almost three orders of magnitude. The flare shows the often observed impulsive behavior, with a rapid rise and slow decay in the optical and a broad soft X-ray maximum about 200 seconds after the optical flare peak. However, in addition to this usually encountered flare phenomenology we find an extremely short (~2 sec) soft X-ray peak, which is very likely of thermal, rather than non-thermal nature and temporally coincides with the optical …

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics01 natural scienceslaw.inventionSettore FIS/05 - Astronomia E Astrofisicalaw0103 physical sciencesThermalCoronal heatingAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsAstrophysics (astro-ph)Flare starX-rays: stars stars: individual: CN Leo stars: flares stars: coronae stars: activityAstronomy and AstrophysicsX-rays; individual; CN Leo; flares; coronae; stars; activityInstantaneous energyWavelengthSpace and Planetary ScienceRapid riseCoronal planePhysics::Space PhysicsFlare
researchProduct

Very Deep inside the SN 1987A Core Ejecta: Molecular Structures Seen in 3D

2017

Most massive stars end their lives in core-collapse supernova explosions and enrich the interstellar medium with explosively nucleosynthesized elements. Following core collapse, the explosion is subject to instabilities as the shock propagates outwards through the progenitor star. Observations of the composition and structure of the innermost regions of a core-collapse supernova provide a direct probe of the instabilities and nucleosynthetic products. SN 1987A in the Large Magellanic Cloud (LMC) is one of very few supernovae for which the inner ejecta can be spatially resolved but are not yet strongly affected by interaction with the surroundings. Our observations of SN 1987A with the Ataca…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSubmillimeter Arraychemistry.chemical_compound0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsLarge Magellanic CloudEjecta010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesQBPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astronomy and AstrophysicsSilicon monoxideAstrophysics - Astrophysics of GalaxiesInterstellar mediumCore (optical fiber)StarsSupernovachemistryAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics - High Energy Astrophysical PhenomenaThe Astrophysical Journal
researchProduct

High Resolution X-ray Spectroscopy of T Tauri Stars in the Taurus-Auriga Complex

2006

Differences have been reported between the X-ray emission of accreting and non-accreting stars. Some observations have suggested that accretion shocks could be responsible for part of the X-ray emission in Classical T Tauri stars (CTTS). We present high-resolution X-ray spectroscopy of nine pre-main sequence stars in order to test the proposed spectroscopic differences between accreting and non-accreting pre-main sequence stars. We use X-ray spectroscopy from the XMM-Newton Reflection Grating Spectrometers and the EPIC instruments. We interpret the spectra using optically thin thermal models with variable abundances, together with an absorption column density. For BP Tau and AB Aur we deriv…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesSpectral line0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsAURIGAStar formationAstrophysics (astro-ph)Astronomy and AstrophysicsAbundance of the chemical elementsAccretion (astrophysics)StarsT Tauri star13. Climate actionSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsMain sequence
researchProduct