Search results for "AUGER"
showing 10 items of 144 documents
Angular-resolved electron spectroscopy from (110) surfaces of ternary Ce-based intermetallics: CePd2Si2 and CeNi2Ge2
1997
Investigations of electronic properties were carried out for the ternary Ce-based intermetallic systems CeT2X2 (T = Ni, Pd; X = Ge, Si). To produce well-ordered and atomically clean surfaces, preparation is carried out in UHV. The polycrystalline substance was evaporated on a W(110) substrate with subsequent annealing. The single-crystalline layers obtained are characterised by MEED (thickness), AES (surface stoichiometry), LEED and SEM (surface structure). For electron-spectroscopic investigations, ARUPS (angle-resolved photoemission spectroscopy) was used. In the photoemission spectra, dispersion effects could be detected by variation of the detection angle.
Relationships between strain, microstructure and oxide growth at the nano- and microscale
2008
In the present article, the relationships between oxidation processes, surface strains and the microstructure of duplex stainless steels were investigated. Specimens were oxidized at 500 °C under secondary vacuum for 1 h to form a thin oxide film (thickness in the range of 20-50 nm). Such specimens were considered as the model system for developing novel methods of analysis in understanding the behavior of passive films. The interfacial strain field after oxidation was measured experimentally at the microscale using the point grid method. On the other hand, the chemical composition of the oxide film was determined at the submicroscopic scale by means of local scanning Auger spectroscopy (wi…
Free-atom—metal shifts in theM4,5N4,5N4,5Auger spectra of Ag, Cd, In, Sn, Sb, and Te
1981
Neutrino searches at the Pierre Auger Observatory
2013
Abstract The surface detector array of the Pierre Auger Observatory is sensitive to ultra-high energy neutrinos in the cosmic radiation. Neutrinos can interact in the atmosphere close to ground (down-going) and, for tau neutrinos, through the Earth-skimming mechanism (up-going) where a tau lepton is produced in the Earth crust that can emerge and decay in the atmosphere. Both types of neutrino-induced events produce an inclined particle air shower that can be identified by the presence of a broad time structure of signals in the water-Cherenkov detectors. We discuss the neutrino identification criteria used and present the corresponding limits on the diffuse and point-like source fluxes.
Deep-learning based reconstruction of the shower maximum X max using the water-Cherenkov detectors of the Pierre Auger Observatory
2021
The atmospheric depth of the air shower maximum $X_{\mathrm{max}}$ is an observable commonly used for the determination of the nuclear mass composition of ultra-high energy cosmic rays. Direct measurements of $X_{\mathrm{max}}$ are performed using observations of the longitudinal shower development with fluorescence telescopes. At the same time, several methods have been proposed for an indirect estimation of $X_{\mathrm{max}}$ from the characteristics of the shower particles registered with surface detector arrays. In this paper, we present a deep neural network (DNN) for the estimation of $X_{\mathrm{max}}$. The reconstruction relies on the signals induced by shower particles in the groun…
Core hole screening and decay rates of double core ionized first row hydrides.
2013
Because of the high intensity, X-ray free electron lasers allow one to create and probe double core ionized states in molecules. The decay of these multiple core ionized states crucially determines the evolution of radiation damage in single molecule diffractive imaging experiments. Here we have studied the Auger decay in hydrides of first row elements after single and double core ionization by quantum mechanical ab initio calculations. In our approach the continuum wave function of the emitted Auger electron is expanded into spherical harmonics on a radial grid. The obtained decay rates of double K-shell vacancies were found to be systematically larger than those for the respective single …
Measurement of the energy spectrum of cosmic rays above 10^18 eV using the Pierre Auger Observatory
2010
We report a measurement of the flux of cosmic rays with unprecedented precision and Statistics using the Pierre Auger Observatory Based on fluorescence observations in coincidence with at least one Surface detector we derive a spectrum for energies above 10(18) eV We also update the previously published energy spectrum obtained with the surface detector array The two spectra are combined addressing the systematic uncertainties and, in particular. the influence of the energy resolution on the spectral shape The spectrum can be described by a broken power law E-gamma with index gamma = 3 3 below the ankle which is measured at log(10)(E-ankle/eV) = 18 6 Above the ankle the spectrum is describe…
Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory
2017
We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to $80^\circ$ and energies in excess of 4 EeV ($4 \times 10^{18}$ eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional informa…
<title>New aspect of light emission from silicon nanocrystals</title>
2003
Intensive light emission (photoluminescence) from silicon nanocrystals has been interpreted in literature as recombinative emission. It has been supposed that the band structure is "pseidodirect." The literature analysis presented in our paper shows that the band structure is indirect and therefore intensive recombinative emission is not possible. According to new aspect, a part of electrons reaches the second conduction subband due to Auger recombination. Then the intensive visible radiation could be caused by transitions of these electrons from the second to the first conduction subband. We have constructed continuity equations for the electron concentration in the first and the second co…
A search for point sources of EeV neutrons
2012
A thorough search of the sky exposed at the Pierre Auger Cosmic Ray Observatory reveals no statistically significant excess of events in any small solid angle that would be indicative of a flux of neutral particles from a discrete source. The search covers from −90◦ to +15◦ in declination using four different energy ranges above 1 EeV (1018 eV). The method used in this search is more sensitive to neutrons than to photons. The upper limit on a neutron flux is derived for a dense grid of directions for each of the four energy ranges. These results constrain scenarios for the production of ultrahigh energy cosmic rays in the Galaxy.