Search results for "AUGER"

showing 10 items of 144 documents

Iron deposition on TiO2(110): effect of the surface stoichiometry and roughness

1999

Abstract Characterizations of ultra-thin iron films deposited on TiO 2 (110) surfaces with different stoichiometries, roughnesses and crystallinities have been carried out by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). For a high initial roughness of the substrate, a 2D growth mode is observed up to three monolayers. But, if the initial roughness is low, clusters grow on the TiO 2 surface. Whatever the initial surface stoichiometry, electronic exchanges occur between titanium and iron leading to a reduction of titanium and an oxidation of iron. This interaction between iron and titanium dioxide surface takes place only at the interface between the metal and…

Auger electron spectroscopyInorganic chemistrytechnology industry and agricultureOxidechemistry.chemical_elementSurfaces and InterfacesSurface finishCondensed Matter PhysicsSurfaces Coatings and Filmschemistry.chemical_compoundchemistryX-ray photoelectron spectroscopyTitanium dioxideMaterials ChemistryLayer (electronics)StoichiometryTitaniumSurface Science
researchProduct

Structural properties of the quaternary Heusler compound Co2 Cr1−x Fex Al

2006

Abstract The structural and chemical properties of the quaternary Heusler compound Co2 Cr1−x Fex Al were investigated comparing powder and bulk samples. The long range order was determined by means of X-ray diffraction, while the site specific (short range) order was proved by the extended X-ray absorption fine structure method (EXAFS). The chemical composition was analysed by means of X-ray photo emission spectroscopy (XPS) combined with Auger electron spectroscopy (AES) depth profiling. The results from these methods are compared to get a detailed idea about the differences between surface and bulk properties and appearance of disorder in such alloys.

Auger electron spectroscopyMaterials scienceExtended X-ray absorption fine structureMechanical EngineeringMetals and AlloysAnalytical chemistryCrystal structureengineering.materialHeusler compoundCrystallographyX-ray photoelectron spectroscopyMechanics of MaterialsX-ray crystallographyMaterials ChemistryengineeringEmission spectrumAbsorption (electromagnetic radiation)Journal of Alloys and Compounds
researchProduct

Relationships between strain, microstructure and oxide growth at the nano- and microscale

2008

In the present article, the relationships between oxidation processes, surface strains and the microstructure of duplex stainless steels were investigated. Specimens were oxidized at 500 °C under secondary vacuum for 1 h to form a thin oxide film (thickness in the range of 20-50 nm). Such specimens were considered as the model system for developing novel methods of analysis in understanding the behavior of passive films. The interfacial strain field after oxidation was measured experimentally at the microscale using the point grid method. On the other hand, the chemical composition of the oxide film was determined at the submicroscopic scale by means of local scanning Auger spectroscopy (wi…

Auger electron spectroscopyMaterials scienceMetallurgyOxideModel systemSurfaces and InterfacesGeneral ChemistryCondensed Matter PhysicsMicrostructureSurfaces Coatings and Filmschemistry.chemical_compoundchemistryNano-Materials ChemistryThin filmComposite materialChemical compositionMicroscale chemistrySurface and Interface Analysis
researchProduct

Fabrication of layered nanostructures by successive electron beam induced deposition with two precursors: protective capping of metallic iron structu…

2011

We report on the stepwise generation of layered nanostructures via electron beam induced deposition (EBID) using organometallic precursor molecules in ultra-high vacuum (UHV). In a first step a metallic iron line structure was produced using iron pentacarbonyl; in a second step this nanostructure was then locally capped with a 2-3 nm thin titanium oxide-containing film fabricated from titanium tetraisopropoxide. The chemical composition of the deposited layers was analyzed by spatially resolved Auger electron spectroscopy. With spatially resolved x-ray absorption spectroscopy at the Fe L₃ edge, it was demonstrated that the thin capping layer prevents the iron structure from oxidation upon e…

Auger electron spectroscopyMaterials scienceNanostructureAbsorption spectroscopyMechanical Engineeringtechnology industry and agricultureAnalytical chemistrychemistry.chemical_elementBioengineeringGeneral ChemistryElectron spectroscopyIron pentacarbonylchemistry.chemical_compoundchemistryChemical engineeringMechanics of MaterialsGeneral Materials ScienceElectrical and Electronic EngineeringElectron beam-induced depositionLayer (electronics)TitaniumNanotechnology
researchProduct

A CEMS/AES study of the passivation of iron

1989

The passivation of iron and steel (DIN 1623) was studied by integral and depth selective conversion electron Mossbauer spectroscopy and Auger electron spectroscopy. Thickness and phase composition of the passive layer formed in sulphate solution and in a phosphate buffer were determined in dependence on the anodic potential and the duration of the passivating procedure. The experimental results lead to the conclusion that not the whole oxidic layer is responsible for the passivity but only a very thin intermediate layer formed between the cubic substrate and the rhombic oxide (γ-FeOOH) cover.

Auger electron spectroscopyMaterials sciencePassivationClinical BiochemistryPassivityInorganic chemistryAnalytical chemistryOxideGeneral MedicineSubstrate (electronics)Analytical ChemistryAnodechemistry.chemical_compoundchemistryConversion electron mössbauer spectroscopyGeneral Materials ScienceLayer (electronics)Fresenius' Zeitschrift für analytische Chemie
researchProduct

Angular-resolved electron spectroscopy from (110) surfaces of ternary Ce-based intermetallics: CePd2Si2 and CeNi2Ge2

1997

Investigations of electronic properties were carried out for the ternary Ce-based intermetallic systems CeT2X2 (T = Ni, Pd; X = Ge, Si). To produce well-ordered and atomically clean surfaces, preparation is carried out in UHV. The polycrystalline substance was evaporated on a W(110) substrate with subsequent annealing. The single-crystalline layers obtained are characterised by MEED (thickness), AES (surface stoichiometry), LEED and SEM (surface structure). For electron-spectroscopic investigations, ARUPS (angle-resolved photoemission spectroscopy) was used. In the photoemission spectra, dispersion effects could be detected by variation of the detection angle.

Auger electron spectroscopyMaterials sciencePhotoemission spectroscopyIntermetallicAnalytical chemistryAngle-resolved photoemission spectroscopySurfaces and InterfacesCondensed Matter PhysicsElectron spectroscopySurfaces Coatings and FilmsCrystallographyX-ray photoelectron spectroscopyMaterials ChemistryCrystalliteTernary operationSurface Science
researchProduct

Preparation by radio-frequency magnetron co-sputtering and characterization of thin films of lanthanum–strontium ferromanganites

2005

Abstract (La 0.8 Sr 0.2 )(Mn 1 −  y Fe y )O 3 ± δ films with y  = 0, 0.2, 0.5, 0.8 and 1, a few hundred nanometers thick, were deposited onto polycrystalline yttria-stabilized zirconia YSZ by a magnetron co-sputtering technique using individual targets of La 0.8 Sr 0.2 MnO 3 and La 0.8 Sr 0.2 FeO 3 . The deposition parameters, substrate temperature and gas pressure, were studied by scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction and interferential microscopy for their effects on the morphological, chemical, topographic and crystallographic properties of films and YSZ-film interfaces. (La 0.8 Sr 0.2 )(Mn 1 −  y Fe y )O 3 ±  δ thin films were found to be …

Auger electron spectroscopyMaterials scienceScanning electron microscopeMetals and AlloysAnalytical chemistrySurfaces and InterfacesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSecondary ion mass spectrometrySputteringCavity magnetronMaterials ChemistryCrystalliteThin filmYttria-stabilized zirconiaThin Solid Films
researchProduct

The growth of oxide platelets on nickel in pure oxygen. II. Surface analyses and growth mechanism

1993

The structural properties of NiO platelets emerging from a primary oxide layer by oxidation of pretreated nickels in pure oxygen between 650 and 800° C have been investigated in relation with the initial metallic layers and the primary oxide. Surface composition and segregation of impurities were also studied by X-ray photoelectron spectroscopy and Auger electron spectroscopy. Textural properties and structural orientation of both the primary oxide layer and the platelets were analyzed by X-ray diffraction and transmission electron microscopy. Platelets grew along {111} planes, leading to elliptical or semicircular bicrystals. The driving force for the present type of growth originates from…

Auger electron spectroscopyMetals and AlloysOxidechemistry.chemical_elementInorganic ChemistryMetalchemistry.chemical_compoundNickelCrystallographychemistryX-ray photoelectron spectroscopyImpurityTransmission electron microscopyvisual_artMaterials Chemistryvisual_art.visual_art_mediumLayer (electronics)Oxidation of Metals
researchProduct

Technical Note:Study of the Cl−-Induced Breakdown of the Passive Layer on Steel

1991

Abstract The Cl−-induced breakdown of the passive layer on a standard steel has an induction time that increases in a nearly linear fashion with the previous holding time (at the passivation potent...

Auger electron spectroscopyPassivationCarbon steelChemistryGeneral Chemical EngineeringMetallurgyPassivityTechnical noteGeneral Chemistryengineering.materialChlorideCorrosionmedicineengineeringGeneral Materials ScienceComposite materialLayer (electronics)medicine.drugCORROSION
researchProduct

Effect of the surface stoichiometry on the interaction of Mo with TiO2 (110)

2000

Abstract Molydenum has been deposited at room temperature on (110) TiO2 surfaces with different stoichiometries, roughnesses and crystallinities. Whatever the substrate preparation is, in-situ Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) studies as well as ex-situ atomic force microscopy (AFM) and reflexion high-energy electron diffraction (RHEED) studies reveal a Stranski–Krastanov growth mode: the completion of three monolayers followed by islands growth is observed in every case. The three monolayers are always composed of amorphous molybdenum oxide with an oxidation state of molybdenum less than IV. The oxidation of the molybdenum layers generates Ti3+ an…

Auger electron spectroscopyReflection high-energy electron diffractionChemistryAnalytical chemistrychemistry.chemical_elementSurfaces and InterfacesSubstrate (electronics)Condensed Matter PhysicsElectron beam physical vapor depositionSurfaces Coatings and FilmsCrystallographyX-ray photoelectron spectroscopyElectron diffractionMolybdenumMonolayerMaterials ChemistrySurface Science
researchProduct