Search results for "Ab-Initio"

showing 10 items of 34 documents

Lower mantle hydrogen partitioning between periclase and perovskite : a quantum chemical modelling

2016

Abstract Partitioning of hydrogen (often referred to as H2O) between periclase (pe) and perovskite (pvk) at lower mantle conditions (24–80 GPa) was investigated using quantum mechanics, equilibrium reaction thermodynamics and by monitoring two H-incorporation models. One of these (MSWV) was based on replacements provided by Mg2+ ↔ 2H+ and Si4+ ↔ 4H+; while the other (MSWA) relied upon substitutions in 2Mg2+ ↔ Al3+ + H+ and Si4+ ↔ Al3+ + H+. H2O partitioning in these phases was considered in the light of homogeneous (Bulk Silicate Earth; pvk: 75%–pe:16% model contents) and heterogeneous (Layered Mantle; pvk:78%–pe:14% modal contents) mantle geochemical models, which were configured for lower…

010504 meteorology & atmospheric sciencesHydrogenpericlaseAnalytical chemistrySocio-culturalechemistry.chemical_elementengineering.material010502 geochemistry & geophysics01 natural sciencesMantle (geology)chemistry.chemical_compoundGeochemistry and PetrologyOrganic chemistryH2O-partitioningperovskiteEquilibrium constant0105 earth and related environmental sciencesChemistryAb-initio calculationslowermantle; H2O-partitioning; periclase; perovskite.SilicatePartition coefficientlower mantleAnhydrousengineeringPericlaseChemical equilibriumlower mantle H2O-partitioning Ab-initio calculations periclase perovskite
researchProduct

Influence of the exchange and correlation functional on the structure of amorphous InSb and In3SbTe2 compounds

2016

We have investigated the structural, vibrational, and electronic properties of the amorphous phase of InSb and In3SbTe2 compounds of interest for applications in phase change non-volatile memories. Models of the amorphous phase have been generated by quenching from the melt by molecular dynamics simulations based on density functional theory. In particular, we have studied the dependence of the structural properties on the choice of the exchange-correlation functional. It turns out that the use of the Becke-Lee-Yang-Parr functional provides models with a much larger fraction of In atoms in a tetrahedral bonding geometry with respect to previous results obtained with the most commonly used P…

10120 Department of Chemistrynon-volatile memoryYield (engineering)Theory of Condensed MatterGeneral Physics and Astronomy02 engineering and technologyElectronic structure01 natural sciencesMolecular dynamicsComputational chemistry540 Chemistry0103 physical sciencesPhysical and Theoretical Chemistry010306 general physicsamorphous materialFIS/03 - FISICA DELLA MATERIAQuenchingChemistry021001 nanoscience & nanotechnologyelectronic structure3100 General Physics and AstronomyAmorphous solidab-initio simulationChemical physicsMolecular vibrationTetrahedronDensity functional theory1606 Physical and Theoretical Chemistry0210 nano-technologyphase change material
researchProduct

Surface charges at the CaF2/water interface allow very fast intermolecular vibrational-energy transfer

2020

Abstract We investigate the dynamics of water in contact with solid calcium fluoride, where at low pH, localized charges can develop upon fluorite dissolution. We use 2D surface‐specific vibrational spectroscopy to quantify the heterogeneity of the interfacial water (D2O) molecules and provide information about the sub‐picosecond vibrational‐energy‐relaxation dynamics at the buried solid/liquid interface. We find that strongly H‐bonded OD groups, with a vibrational frequency below 2500 cm−1, display very rapid spectral diffusion and vibrational relaxation; for weakly H‐bonded OD groups, above 2500 cm−1, the dynamics slows down substantially. Atomistic simulations based on electronic‐structu…

540 Chemistry and allied sciencesMaterials science530 Physics2D sum-frequency generation010402 general chemistry01 natural sciencesCatalysisVibrational energy relaxationSurface chargeDiffusion (business)DissolutionResearch Articlesenergy transfer010405 organic chemistryIntermolecular forceGeneral ChemistryInterfacial Chemistryab-initio molecular dynamics530 Physik0104 chemical sciencesDipoleSolvation shellChemical physicsMolecular vibration540 Chemiesolid/liquid interfacesResearch Article
researchProduct

H-He collision-induced satellite in the Lyman alpha profile of DBA white dwarf stars

2020

The spectra of helium-dominated white dwarf stars with hydrogen in their atmosphere present a distinctive broad feature centered around 1160~\AA\/ in the blue wing of the Lyman-$\alpha$ line. It is extremely apparent in WD 1425+540 recently observed with HST COS. With new theoretical line profiles based on ab initio atomic interaction potentials we show that this feature is a signature of a collision-induced satellite due to an asymptotically forbidden transition. This quasi-molecular spectral satellite is crucial to understanding the asymmetrical shape of Lyman-$\alpha$ seen in this and other white dwarf spectra. Our previous work predicting this absorption feature was limited by molecular…

ATOMIC DATALINE: PROFILEAb initiochemistry.chemical_elementBASIS-SETLINEEXCITED-STATEAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral linePhysics - Atomic PhysicsWHITE DWARF0103 physical sciencesRadiative transferABSORPTIONAstrophysics::Solar and Stellar AstrophysicsAB-INITIO CALCULATIONPhysics::Atomic PhysicsELECTRONIC-TRANSITION MOMENT010306 general physicsSTARS: ATMOSPHERE010303 astronomy & astrophysicsHeliumLine (formation)POTENTIAL-ENERGY CURVEPhysics[PHYS]Physics [physics]BALMER-ALPHAWhite dwarfAstronomy and AstrophysicsMOLECULAR DATAPotential energyDipolechemistryAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceATOMIC PROCESSSHAPE[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Assessment of the Potential Energy Hypersurfaces in Thymine within Multiconfigurational Theory: CASSCF vs. CASPT2

2016

The present study provides new insights into the topography of the potential energy hypersurfaces (PEHs) of the thymine nucleobase in order to rationalize its main ultrafast photochemical decay paths by employing two methodologies based on the complete active space self-consistent field (CASSCF) and the complete active space second-order perturbation theory (CASPT2) methods: (i) CASSCF optimized structures and energies corrected with the CASPT2 method at the CASSCF geometries and (ii) CASPT2 optimized geometries and energies. A direct comparison between these strategies is drawn, yielding qualitatively similar results within a static framework. A number of analyses are performed to assess t…

Chemistry Multidisciplinary2-DIMENSIONAL ELECTRONIC SPECTROSCOPYPharmaceutical Sciencephotostability0305 Organic Chemistry01 natural sciencesLOWEST TRIPLET-STATEAnalytical ChemistryInterpretation (model theory)Molecular dynamicschemistry.chemical_compoundComputational chemistryDrug DiscoveryComplete active spacePerturbation theoryRETINAL CHROMOPHORE MODELComputingMilieux_MISCELLANEOUSAB-INITIOphotochemistry010304 chemical physicsBasis (linear algebra)ChemistryCOUPLED-CLUSTER METHODSPhotochemical ProcessesPotential energy[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryChemistryChemistry (miscellaneous)2ND-ORDER PERTURBATION-THEORYPhysical SciencesANO BASIS-SETSCASSCF/CASPT2Molecular MedicineThermodynamicsLife Sciences & BiomedicineBiochemistry & Molecular BiologyField (physics)INITIO MOLECULAR-DYNAMICSMolecular Dynamics Simulation010402 general chemistryMolecular physicsArticlelcsh:QD241-441lcsh:Organic chemistryCASSCF/CASPT2; photochemistry; DNA; thymine; photostability0103 physical sciencesthyminePhysical and Theoretical ChemistryULTRAFAST INTERNAL-CONVERSIONScience & TechnologyOrganic ChemistryDNAEXCITED-STATE DYNAMICS0104 chemical sciencesThymineModels ChemicalMolecules; Volume 21; Issue 12; Pages: 1666
researchProduct

First-principles study of nitrogen doping in cubic and amorphous Ge2Sb2Te5

2011

We investigated the structural, electronic and vibrational properties of amorphous and cubic Ge(2)Sb(2)Te(5) doped with N at 4.2 at.% by means of large scale ab initio simulations. Nitrogen can be incorporated in molecular form in both the crystalline and amorphous phases at a moderate energy cost. In contrast, insertion of N in the atomic form is very energetically costly in the crystalline phase, though it is still possible in the amorphous phase. These results support the suggestion that N segregates at the grain boundaries during the crystallization of the amorphous phase, resulting in a reduction in size of the crystalline grains and an increased crystallization temperature.

ChemistryDopingAb initioCondensed Matter Physicslaw.inventionAmorphous solidCondensed Matter::Materials ScienceCrystallographyAmorphous carbonlawPhase (matter)PolyamorphismGeneral Materials ScienceGrain boundaryCrystallizationFIS/03 - FISICA DELLA MATERIAab-initio simulations phase change materialsJournal of Physics: Condensed Matter
researchProduct

Magnetic field-induced alignment of molecular rotor-shaped cyclophanes

2010

Molecular pinwheels consisting of dipolar substituted cyclophanes in solution can function as free microscopic rotors in the presence of a homogeneous static magnetic field B and a circularly polarized electric field E rotating on a plane containing B. Owing to the high magnetic anisotropy of [26](1,2,3,4,5,6)cyclophane and [36](1,2,3,4,5,6)cyclophane biased by strong ring currents, ∼1 in 105 molecules are expected to align with the C6 symmetry axis perpendicular to a magnetic field of 21 T. The magnetic-field-controlled alignment of rotor-shaped cyclophanes is insignificantly affected by nonpolar solvents, for example, toluene.

ChemistryRotor-shaped cyclophanes; molecular engines; magnetic field-controlled molecular alignment; dipolar rotors in circularly polarized electric field; ab-initio calculations; solvent effectsMagnetostaticsMolecular physicsSymmetry (physics)Magnetic fieldDipolechemistry.chemical_compoundMagnetic anisotropyNuclear magnetic resonanceElectric fieldPerpendicularGeneral Materials SciencePhysical and Theoretical ChemistryCyclophane
researchProduct

Molecular Dynamics of CH

2019

We theoretically investigate graphene layers, proposing them as membranes of subnanometer size suitable for CH4/N2 separation and gas uptake. The observed potential energy surfaces, representing the intermolecular interactions within the CH4/N2 gaseous mixtures and between these and the graphene layers, have been formulated by adopting the so-called Improved Lennard-Jones (ILJ) potential, which is far more accurate than the traditional Lennard-Jones potential. Previously derived ILJ force fields are used to perform extensive molecular dynamics simulations on graphene's ability to separate and adsorb the CH4/N2 mixture. Furthermore, the intramolecular interactions within graphene were explic…

Chemistryadsorptionab initio calculationsab-initio potentialflexible graphenemolecular dynamicsOriginal ResearchFrontiers in chemistry
researchProduct

Implementation of local chiral interactions in the hyperspherical harmonics formalism

2021

With the goal of using chiral interactions at various orders to explore properties of the few-body nuclear systems, we write the recently developed local chiral interactions as spherical irreducible tensors and implement them in the hyperspherical harmonics expansion method. We devote particular attention to three-body forces at next-to-next-to leading order, which play an important role in reproducing experimental data. We check our implementation by benchmarking the ground-state properties of $^3$H, $^3$He and $^4$He against the available Monte Carlo calculations. We then confirm their order-by-order truncation error estimates and further investigate uncertainties in the charge radii obta…

Chiral perturbation theoryNuclear TheoryTruncation error (numerical integration)Formalism (philosophy)Materials Science (miscellaneous)QC1-999Monte Carlo methodBiophysicsGeneral Physics and AstronomyFOS: Physical sciences01 natural scienceschiral effective field theoryNuclear Theory (nucl-th)Theoretical physics0103 physical sciencesPhysical and Theoretical Chemistry010306 general physicsMathematical PhysicsExotic atomPhysics010308 nuclear & particles physicsPhysicsOrder (ring theory)light nucleiCharge (physics)Harmonicshyperspherical harmonicsnuclear interactionsab-initio theory
researchProduct

White-light phosphorescence emission from a single molecule: application to OLED.

2009

A simple mononuclear cyclometallated iridium(III) complex exhibits white photo- and electro- luminescence in the wavelength range from 440 to 800 nm, which originates from a single emitting excited state of mixed character. Bolink Henk, Henk.Bolink@uv.es ; Coronado Miralles, Eugenio, Eugenio.Coronado@uv.es

DesignLuminescenceUNESCO::QUÍMICAAb initioColorchemistry.chemical_elementEfficiency010402 general chemistryPhotochemistry:QUÍMICA [UNESCO]01 natural sciencesCatalysisCopolymerIridium ComplexesMaterials ChemistryOLEDMoleculeIridiumDiodeEmitting DevicesMononuclear cyclometallated iridiumPhosphorescence010405 organic chemistryChemistrybusiness.industryUNESCO::QUÍMICA::Química analíticaMetals and AlloysAb-InitioGeneral ChemistryDiodes0104 chemical sciences3. Good healthSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBlueOLEDExcited stateGreen:QUÍMICA::Química analítica [UNESCO]Ceramics and CompositesOptoelectronicsMononuclear cyclometallated iridium ; Luminescence ; Phosphorescence ; OLEDLuminescencePhosphorescencebusinessChemical communications (Cambridge, England)
researchProduct