Search results for "Absolute continuity"

showing 10 items of 34 documents

Almost sure rates of mixing for i.i.d. unimodal maps

2002

International audience; It has been known since the pioneering work of Jakobson and subsequent work by Benedicks and Carleson and others that a positive measure set of quadratic maps admit an absolutely continuous invariant measure. Young and Keller-Nowicki proved exponential decay of its correlation functions. Benedicks and Young, and Baladi and Viana studied stability of the density and exponential rate of decay of the Markov chain associated to i.i.d. small perturbations. The almost sure statistical properties of the sample stationary measures of i.i.d. itineraries are more difficult to estimate than the "averaged statistics". Adapting to random systems, on the one hand partitions associ…

Independent and identically distributed random variables[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]Mathematics::Dynamical SystemsMarkov chainGeneral Mathematics010102 general mathematicsMathematical analysisErgodicityAbsolute continuity01 natural sciencesExponential function[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]010104 statistics & probabilityQuadratic equationInvariant measure0101 mathematicsExponential decayddc:510Mathematics
researchProduct

Optimal maps and exponentiation on finite dimensional spaces with Ricci curvature bounded from below

2013

We prove existence and uniqueness of optimal maps on $RCD^*(K,N)$ spaces under the assumption that the starting measure is absolutely continuous. We also discuss how this result naturally leads to the notion of exponentiation.

Mathematics - Differential GeometryExponentiationLower Ricci bounds; Optimal maps; Optimal transport; RCD spaces01 natural sciencesMeasure (mathematics)Combinatoricssymbols.namesakeMathematics - Metric GeometryRCD spacesSettore MAT/05 - Analisi MatematicaFOS: MathematicsOptimal transportMathematics::Metric GeometryUniqueness0101 mathematicsLower Ricci bounds[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG]Ricci curvatureMathematicsDiscrete mathematics010102 general mathematicsMetric Geometry (math.MG)Absolute continuity16. Peace & justice010101 applied mathematicsMathematics::LogicDifferential geometryDifferential Geometry (math.DG)Fourier analysisBounded functionsymbolsOptimal mapsGeometry and Topology
researchProduct

A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space

2020

We provide a quick proof of the following known result: the Sobolev space associated with the Euclidean space, endowed with the Euclidean distance and an arbitrary Radon measure, is Hilbert. Our new approach relies upon the properties of the Alberti-Marchese decomposability bundle. As a consequence of our arguments, we also prove that if the Sobolev norm is closable on compactly-supported smooth functions, then the reference measure is absolutely continuous with respect to the Lebesgue measure.

Mathematics::Functional AnalysisPure mathematicsLebesgue measureEuclidean spaceGeneral Mathematics010102 general mathematicsAbsolute continuity01 natural sciencesMeasure (mathematics)Functional Analysis (math.FA)Mathematics - Functional AnalysisdifferentiaaligeometriaEuclidean distanceSobolev spaceNorm (mathematics)0103 physical sciencesRadon measureFOS: Mathematics010307 mathematical physics0101 mathematicsfunktionaalianalyysi53C23 46E35 26B05MathematicsComptes Rendus. Mathématique
researchProduct

Absolutely continuous functions in Rn

2005

Abstract For each 0 α 1 we consider a natural n-dimensional extension of the classical notion of absolute continuous function. We compare it with the Malý's and Hencl's definitions. It follows that each α-absolute continuous function is continuous, weak differentiable with gradient in L n , differentiable almost everywhere and satisfies the formula on change of variables.

Polish groupPure mathematicsChange of variablesα-regular intervalsContinuous functionApplied MathematicsMathematical analysisNull set or empty setQuasi-continuous functionAbsolute continuityWeak derivativeAbsolutely continuous functionsSobolev spaceHaar nullSobolev spacesAlmost everywhereDifferentiable functionAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Singular quasisymmetric mappings in dimensions two and greater

2018

For all $n \geq 2$, we construct a metric space $(X,d)$ and a quasisymmetric mapping $f\colon [0,1]^n \rightarrow X$ with the property that $f^{-1}$ is not absolutely continuous with respect to the Hausdorff $n$-measure on $X$. That is, there exists a Borel set $E \subset [0,1]^n$ with Lebesgue measure $|E|>0$ such that $f(E)$ has Hausdorff $n$-measure zero. The construction may be carried out so that $X$ has finite Hausdorff $n$-measure and $|E|$ is arbitrarily close to 1, or so that $|E| = 1$. This gives a negative answer to a question of Heinonen and Semmes.

Property (philosophy)General MathematicsExistential quantificationMathematics::General Topology01 natural sciencesfunktioteoriaCombinatoricsMathematics - Metric Geometry0103 physical sciences30L10FOS: MathematicsMathematics::Metric Geometry0101 mathematicsMathematicsLebesgue measuremetric space010102 general mathematicsHausdorff spaceZero (complex analysis)quasiconformal mappingMetric Geometry (math.MG)Absolute continuity16. Peace & justicemetriset avaruudetMetric spaceabsolute continuity010307 mathematical physicsBorel set
researchProduct

Relations between natural and observable measures

2005

We give a complete description of relations between observable and natural measures in connection with invariance, ergodicity and absolute continuity.

Pure mathematicsApplied MathematicsErgodicityMathematical analysisGeneral Physics and AstronomyNatural (music)Statistical and Nonlinear PhysicsObservableAbsolute continuityDynamical system (definition)Mathematical PhysicsMathematicsConnection (mathematics)Nonlinearity
researchProduct

Absolutely continuous functions and differentiability in Rn

2002

Abstract We relativize the notion of absolute continuity of functions in R n , due to Rado, Reichelderfer and Malý, to subsets of R n and use it to characterize functions (possibly vector valued) differentiable almost everywhere.

Pure mathematicsApplied MathematicsMathematical analysisAlmost everywhereDifferentiable functionAbsolute continuityAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Integration of both the derivatives with respect to P-paths and approximative derivatives

2009

In the present paper, in terms of generalized absolute continuity, we present a descriptive characteristic of the primitive with respect to a system of P-paths and study the relationship between the Denjoy-Khinchin integral and the Henstock H P-integral. © 2009 Pleiades Publishing, Ltd.

Pure mathematicsDenjoy-Khinchin integralMeasurable setGeneral MathematicsCalculusDerivative with respect to P-pathHenstock H P-integralMathematics (all)Absolute continuityAbsolute continuityBaire theoremMathematics
researchProduct

On the problem of regularity in the Sobolev space Wloc1,n

2009

Abstract We prove that a variant of the Hencl's notion of A C λ n -mapping (see [S. Hencl, On the notions of absolute continuity for functions of several variables, Fund. Math. 173 (2002) 175–189]), in which λ is not a constant, produces a new solution to the problem of regularity in the Sobolev space W loc 1 , n .

Pure mathematicsDifferentiabilityMathematical analysisAbsolute continuity Differentiability Lusin’s condition (N) Change of variables formulasChange of variables formulasAbsolute continuityAbsolute continuityLusin's condition (N)Sobolev inequalitySobolev spaceSettore MAT/05 - Analisi MatematicaGeometry and TopologyDifferentiable functionConstant (mathematics)MathematicsTopology and its Applications
researchProduct

A new full descriptive characterization of Denjoy-Perron integral

1995

It is proved that the absolute continuity of the variational measure generated by an additive interval function \(F\) implies the differentiability almost everywhere of the function \(F\) and gives a full descriptive characterization of the Denjoy-Perron integral.

Pure mathematicsHenstock–Kurzweil integralMathematical analysisMeasure (physics)Riemann integralFunction (mathematics)Absolute continuitysymbols.namesakesymbolsAlmost everywhereGeometry and TopologyDaniell integralDifferentiable functionAnalysisMathematics
researchProduct