6533b827fe1ef96bd1286780

RESEARCH PRODUCT

Singular quasisymmetric mappings in dimensions two and greater

Matthew Romney

subject

Property (philosophy)General MathematicsExistential quantificationMathematics::General Topology01 natural sciencesfunktioteoriaCombinatoricsMathematics - Metric Geometry0103 physical sciences30L10FOS: MathematicsMathematics::Metric Geometry0101 mathematicsMathematicsLebesgue measuremetric space010102 general mathematicsHausdorff spaceZero (complex analysis)quasiconformal mappingMetric Geometry (math.MG)Absolute continuity16. Peace & justicemetriset avaruudetMetric spaceabsolute continuity010307 mathematical physicsBorel set

description

For all $n \geq 2$, we construct a metric space $(X,d)$ and a quasisymmetric mapping $f\colon [0,1]^n \rightarrow X$ with the property that $f^{-1}$ is not absolutely continuous with respect to the Hausdorff $n$-measure on $X$. That is, there exists a Borel set $E \subset [0,1]^n$ with Lebesgue measure $|E|>0$ such that $f(E)$ has Hausdorff $n$-measure zero. The construction may be carried out so that $X$ has finite Hausdorff $n$-measure and $|E|$ is arbitrarily close to 1, or so that $|E| = 1$. This gives a negative answer to a question of Heinonen and Semmes.

http://arxiv.org/abs/1803.02322