Search results for "Acceptor"

showing 10 items of 394 documents

Comparative analysis of the effects of a sphingosine kinase inhibitor to temozolomide and radiation treatment on glioblastoma cell lines.

2017

ABSTRACT Glioblastoma multiforme (GBM) exhibits high resistance to the standard treatment of temozolomide (TMZ) combined with radiotherapy, due to its remarkable cell heterogeneity. Accordingly, there is a need to target alternative molecules enhancing specific GBM autocrine or paracrine mechanisms and amplifying the effect of standard treatment. Sphingosine 1-phosphate (S1P) is such a lipid target molecule with an important role in cell invasion and proliferation. Sphingosine kinase inhibitors (SKI) prevent S1P formation and induce increased production of reactive oxygen species (ROS), which may potentiate radiation cytotoxicity. We analyzed the effect of SKI singular versus combined treat…

0301 basic medicineCancer ResearchRadiation-Sensitizing AgentsCell SurvivalCellSphingosine kinaseApoptosistemozolomideBiologyRadiation Tolerancesphingosine kinase inhibition03 medical and health scienceschemistry.chemical_compoundCell Line TumorX-raysmedicineHumansGPx1oxidative stressCytotoxicityAutocrine signallingAntineoplastic Agents AlkylatingPharmacologychemistry.chemical_classificationReactive oxygen speciesTemozolomideSphingosineBrain NeoplasmsDrug SynergismChemoradiotherapyMolecular biologyDacarbazinePhosphotransferases (Alcohol Group Acceptor)030104 developmental biologymedicine.anatomical_structureOncologychemistryCell cultureradiosensitivityCancer researchMolecular MedicineDrug Screening Assays AntitumorGlioblastomamedicine.drugResearch PaperCancer biologytherapy
researchProduct

Ultrafast structural changes within a photosynthetic reaction centre

2021

Nature <London> / Physical science 589, 310 - 314 (2021). doi:10.1038/s41586-020-3000-7

0301 basic medicinePhotosynthetic reaction centreChlorophyllModels MolecularklorofylliCytoplasmUbiquinonePhotosynthetic Reaction Center Complex ProteinsElectrons02 engineering and technologyPhotochemistrymedicine.disease_cause530yhteyttäminenbakteeritElectron Transport03 medical and health sciencesElectron transfermedicineMoleculeddc:530BacteriochlorophyllsbioenergetiikkaComputingMilieux_MISCELLANEOUSHyphomicrobiaceaeMultidisciplinaryBinding SitesCrystallography[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry Molecular Biology/Structural Biology [q-bio.BM]ChemistryBlastochloris viridisLaserskalvot (biologia)PheophytinsBiological membraneVitamin K 2021001 nanoscience & nanotechnologyAcceptor030104 developmental biologyPicosecondFemtosecondsense organsProtons0210 nano-technologyOxidation-Reductionröntgenkristallografia
researchProduct

Insights into the inhibited form of the redox-sensitive SufE-like sulfur acceptor CsdE

2017

17 p.-8 fig.

0301 basic medicineProtein ConformationDimerlcsh:MedicineMolecular DynamicsCrystallography X-RayPhysical ChemistryBiochemistryDEAD-box RNA HelicasesMolecular dynamicschemistry.chemical_compoundComputational ChemistryNucleophileBiochemical Simulationslcsh:ScienceMultidisciplinaryCrystallographyChemistryOrganic CompoundsPhysicsEscherichia coli ProteinsCondensed Matter Physics3. Good healthPhysical sciencesChemistryCarbon-Sulfur LyasesBiochemistryCrystal StructureResearch ArticleChemical ElementsProtein subunitChemical physicschemistry.chemical_elementOxidative phosphorylationMolecular Dynamics Simulation03 medical and health sciencesThiolsEscherichia coliSolid State PhysicsProtein Interaction Domains and MotifsChemical BondingOrganic Chemistrylcsh:RChemical CompoundsBiology and Life SciencesComputational BiologyDimers (Chemical physics)Hydrogen BondingCell BiologySulfurAcceptorRedox sensitiveOxidative Stress030104 developmental biologyBiophysicslcsh:QProtein MultimerizationSulfur
researchProduct

Development of novel 1,4-benzodiazepine-based Michael acceptors as antitrypanosomal agents

2016

Novel 1,4-benzodiazepines, endowed with a Michael acceptor moiety, were designed taking advantage of a computational prediction of their pharmacokinetic parameters. Among all the synthesized derivatives, we identified a new lead compound (i.e., 4a), bearing a vinyl ketone warhead and endowed with a promising antitrypanosomal activity against Trypanosoma brucei brucei (IC50 = 5.29 µM), coupled with a lack of cytotoxicity towards mammalian cells (TC50>100 µM).

0301 basic medicineTrypanosomaKetonePeptidomimeticPeptidomimeticStereochemistryTrypanosoma brucei bruceiClinical BiochemistryPharmaceutical ScienceTrypanosoma brucei01 natural sciencesBiochemistryCell LineBenzodiazepinesMiceStructure-Activity Relationship03 medical and health scienceschemistry.chemical_compoundparasitic diseasesDrug DiscoveryAnimalsStructure–activity relationshipMoietyCytotoxicityMolecular BiologyMicrowave irradiationchemistry.chemical_classificationDose-Response Relationship DrugMolecular Structurebiology010405 organic chemistryMacrophagesOrganic Chemistrybiology.organism_classificationMichael acceptors Microwave irradiation Peptidomimetics Pharmacokinetic parameters TrypanosomaTrypanocidal Agents0104 chemical sciencesPharmacokinetic parameter030104 developmental biologychemistryMichael reactionMolecular MedicineMichael acceptorLead compoundBioorganic & Medicinal Chemistry Letters
researchProduct

Short X···N Halogen Bonds With Hexamethylenetetraamine as the Acceptor

2021

Hexamethylenetetramine (HMTA) and N-haloimides form two types of short (imide)X···N and X–X···N (X = Br, I) halogen bonds. Nucleophilic substitution or ligand-exchange reaction on the peripheral X of X–X···N with the chloride of N-chlorosuccinimide lead to Cl–X···N halogen-bonded complexes. The 1:1 complexation of HMTA and ICl manifests the shortest I···N halogen bond [2.272(5) Å] yet reported for an HMTA acceptor. Two halogen-bonded organic frameworks are prepared using 1:4 molar ratio of HMTA and N-bromosuccinimide, each with a distinct channel shape, one possessing oval and the other square grid. The variations in channel shapes are due to tridentate and tetradentate (imide)Br···N coordi…

116 Chemical scienceschemistry.chemical_elementHMTAN-haloimidechemistry.chemical_compoundkemialliset sidoksethalogen bond. hexamethylenetetraamine. N-haloimide.Nucleophilic substitutionsupramolekulaarinen kemiaQD1-999orgaaniset yhdisteetOriginal ResearchInterhalogenHalogen bondBrominehalogeenitChemistryhexamethylenetetraaminehalogen bond. hexamethylenetetraamine. N-haloimideGeneral ChemistryAcceptorChemistryCrystallographyCovalent bondinterhalogenHalogendihalogenhalogen bondHexamethylenetetramine
researchProduct

Effect of high temperature annealing (T > 1650 °C) on the morphological and electrical properties of p-type implanted 4H-SiC layers

2019

This work reports on the effect of high temperature annealing on the electrical properties of p-type implanted 4H-SiC. Ion implantations of Aluminum (Al) at different energies (30-200 keV) were carried out to achieve 300 nm thick acceptor box profiles with a concentration of about 10(20) at/cm(3). The implanted samples were annealed at high temperatures (1675-1825 degrees C). Morphological analyses of the annealed samples revealed only a slight increase of the surface roughness RMS up to 1775 degrees C, while this increase becomes more significant at 1825 degrees C (RMS = 1.2 nm). Room temperature Hall measurements resulted in a hole concentration in the range 0.65-1.34 x 10(18)/cm(3) and m…

4H-SiCMaterials scienceFabricationAnnealing (metallurgy)Analytical chemistrychemistry.chemical_element02 engineering and technologyActivation energy01 natural sciencesIonAluminium0103 physical sciencesSurface roughnessGeneral Materials ScienceElectrical measurements010302 applied physicsCondensed Matter - Materials ScienceMechanical EngineeringPhysics - Applied Physics021001 nanoscience & nanotechnologyCondensed Matter PhysicsAcceptorPost implantation annealingchemistryMechanics of MaterialsElectrical activationp-type implantation0210 nano-technologyMaterials Science in Semiconductor Processing
researchProduct

Intramolecular charge transfer and enhanced quadratic optical non-linearities in push pull polyenes

1997

Abstract Push-pull polyenes, which have an electron-donating group (D) and an electron-withdrawing group (A) grafted on opposite ends of a conjugated polyenic chain, are of particular interest as model compounds for long-distance intramolecular charge transfer (ICT), as well as potent non-linear optical chromophores. Several series of push-pull polyenes of increasing length, combining aromatic donor moieties and various acceptor groups, have been prepared and studied. Their linear and non-linear optical properties have been investigated by performing electro-optical absorption measurements (FOAM) and electric-field-induced second-harmonic generation (EFISH) experiments in solution. Each mol…

Absorption spectroscopyChemistryGeneral Chemical EngineeringGeneral Physics and AstronomyGeneral ChemistryChromophorePhotochemistryMolecular physicsAcceptorDipoleAbsorption bandExcited stateIntramolecular forceBathochromic shiftJournal of Photochemistry and Photobiology A: Chemistry
researchProduct

Regio(ir)regular naphthalenediimide- and perylenediimide-bithiophene copolymers: How MO localization controls the bandgap

2016

Absorption spectra of regio(ir)regular naphthalenediimide (NDI)- and perylenediimide (PDI)-bithiophene (2T) donor/acceptor (D/A) copolymers are surprisingly similar despite cross-conjugation in the regioirregular structures. This result is traced back to largely localized frontier molecular orbitals (FMOs) as revealed by (time-dependent) DFT calculations. Interestingly, while the FMOs of the P(PDI-2T) copolymer are localized solely in the PDI units, they are predominantly localized in the respective D/A units of the P(NDI-2T) copolymer. The pronounced CT character of the lowest singlet state in P(NDI-2T) should give rise to a close lying CT triplet state, generating small singlet–triplet ga…

Absorption spectroscopyOrganic solar cellBand gapChemistry02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesAcceptor0104 chemical sciencesMaterials ChemistryCopolymerMolecular orbitalSinglet stateTriplet state0210 nano-technology
researchProduct

Electronic signature of the instantaneous asymmetry in the first coordination shell of liquid water

2013

Interpretation of the X-ray spectra of water as evidence for its asymmetric structure has challenged the conventional symmetric nearly-tetrahedral model and initiated an intense debate about the order and symmetry of the hydrogen bond network in water. Here, we present new insights into the nature of local interactions in water obtained using a novel energy decomposition method. Our simulations reveal that while a water molecule forms, on average, two strong donor and two strong acceptor bonds, there is a significant asymmetry in the energy of these contacts. We demonstrate that this asymmetry is a result of small instantaneous distortions of hydrogen bonds, which appear as fluctuations on …

Absorption spectroscopymedia_common.quotation_subjectShell (structure)FOS: Physical sciencesGeneral Physics and AstronomyCondensed Matter - Soft Condensed Matter010402 general chemistry01 natural sciencesAsymmetryMolecular physicsGeneral Biochemistry Genetics and Molecular BiologySpectral linePhysics - Chemical Physics0103 physical sciencesMoleculeCondensed Matter - Statistical Mechanicsmedia_commonChemical Physics (physics.chem-ph)PhysicsMultidisciplinaryStatistical Mechanics (cond-mat.stat-mech)010304 chemical physicsHydrogen bondGeneral ChemistryComputational Physics (physics.comp-ph)AcceptorSymmetry (physics)0104 chemical sciencesCondensed Matter - Other Condensed MatterSoft Condensed Matter (cond-mat.soft)Physics - Computational PhysicsOther Condensed Matter (cond-mat.other)
researchProduct

Incorporation of Li dopant into Cu2ZnSnSe4 photovoltaic absorber: hybrid-functional calculations

2015

We have studied the formation of Li extrinsic defects in CuZnSnSe by first-principles hybrid functional calculations. Li atoms in the Cu site (Li) and Li atoms in the Se site (Li) are the most and the least stable point defect, respectively. The formation energies of two Li interstitial defects with different numbers of nearest neighbors are the same. These interstitial point defects act as a donor but do not create gap states. Formation of the acceptor point defects (Li and Li) is less likely in p-type CuZnSnSe compared with n-type CuZnSnSe. In contrast to Li which does not create gap states, the formation of Li creates two charge transition levels in the middle of the bandgap which might …

Acoustics and UltrasonicsDopantBand gapChemistryElectronCondensed Matter PhysicsAcceptorCrystallographic defectStable pointMolecular physicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsHybrid functionalComputational chemistryRecombinationJournal of Physics D: Applied Physics
researchProduct