Search results for "Acetobacter"

showing 10 items of 14 documents

Cells-qPCR as a direct quantitative PCR method to avoid microbial DNA extractions in grape musts and wines.

2017

A novel quantitative PCR assay called Cells-qPCR has been developed for the rapid detection and quantification of yeasts, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) directly from grape must and wine that does not require DNA extraction. The assay was tested on Brettanomyces bruxellensis, Saccharomyces cerevisiae, Lactobacillus plantarum, Oenococcus oeni, Acetobacter aceti and Gluconobacter oxydans in culture media, and in white and red grape musts and wines. Standard curves were constructed from DNA and cells for the six target species in all the matrices. Good efficiencies were obtained for both when comparing DNA and cells standard curves. No reaction inhibition was observe…

0301 basic medicineDNA Bacterial030106 microbiologyBrettanomyces bruxellensisWineReal-Time Polymerase Chain ReactionMicrobiologyMicrobiology03 medical and health sciencesYeastsAcetobacterVitisAcetic acid bacteriaDNA FungalOenococcusOenococcus oeniAcetobacter acetiWineChromatographybiologyfood and beveragesGeneral Medicinebiology.organism_classificationDNA extractionFermentationAcetobacterOenococcusFood ScienceLactobacillus plantarumInternational journal of food microbiology
researchProduct

A Metagenomic-Based Approach for the Characterization of Bacterial Diversity Associated with Spontaneous Malolactic Fermentations in Wine

2019

This study reports the first application of a next generation sequencing (NGS) analysis. The analysis was designed to monitor the effect of the management of microbial resources associated with alcoholic fermentation on spontaneous malolactic consortium. Together with the analysis of 16S rRNA genes from the metagenome, we monitored the principal parameters linked to MLF (e.g., malic and lactic acid concentration, pH). We encompass seven dissimilar concrete practices to manage microorganisms associated with alcoholic fermentation: Un-inoculated must (UM), pied-de-cuve (PdC), Saccharomyces cerevisiae (SC), S. cerevisiae and Torulaspora delbrueckii co-inoculated and sequentially inoculated, as…

0301 basic medicineEthanol fermentation<i>Lactobacillus plantarum</i>16S rRNA metataxonomy; lactic acid bacteria; Lactobacillus plantarum; malolactic consortium; malolactic fermentation; Metschnikowia pulcherrima; Oenococcus oeni; Saccharomyces cerevisiae; Torulaspora delbrueckii; wine<i>Oenococcus oeni</i>malolactic consortiumlcsh:Chemistrychemistry.chemical_compoundLactobacillalesRNA Ribosomal 16SFood sciencelcsh:QH301-705.5SpectroscopyOenococcus oeniCommunicationfood and beverages16S rRNA metataxonomyGeneral MedicineMetschnikowia pulcherrimaComputer Science Applicationsmalolactic fermentation030106 microbiologyTorulaspora delbrueckiiSaccharomyces cerevisiaeBiologyCatalysisInorganic Chemistry<i>Saccharomyces cerevisiae</i>03 medical and health sciencesTorulaspora delbrueckiiMalolactic fermentationPhysical and Theoretical ChemistrywineMolecular BiologyOrganic Chemistry<i>Metschnikowia pulcherrima</i>Torulasporabiology.organism_classificationlactic acid bacteria030104 developmental biologychemistrylcsh:Biology (General)lcsh:QD1-999FermentationMetagenomeFermentationMalic acidAcetobacterOenococcus oeniMetschnikowia pulcherrimaSettore AGR/16 - Microbiologia AgrariaLactobacillus plantarum<i>Torulaspora delbrueckii</i>International Journal of Molecular Sciences
researchProduct

Development of enzymatically-active bacterial cellulose membranes through stable immobilization of an engineered beta-galactosidase

2018

Enzymatically-active bacterial cellulose (BC) was prepared by non-covalent immobilization of a hybrid enzyme composed by a β-galactosidase from Thermotoga maritima (TmLac) and a carbohydrate binding module (CBM2) from Pyrococcus furiosus. TmLac-CBM2 protein was bound to BC, with higher affinity at pH 6.5 than at pH 8.5 and with high specificity compared to the non-engineered enzyme. Both hydrated (HBC) and freeze-dried (DBC) bacterial cellulose showed equivalent enzyme binding efficiencies. Initial reaction rate of HBC-bound enzyme was higher than DBC-bound and both of them were lower than the free enzyme. However, enzyme performance was similar in all three cases for the hydrolysis of 5% l…

0301 basic medicineImmobilized enzyme02 engineering and technologyProtein EngineeringBiochemistryBacterial cellulose03 medical and health sciencesHydrolysischemistry.chemical_compoundCarbohydrate binding moduleStructural BiologyEnzyme StabilityThermotoga maritimaCelluloseMolecular BiologyLactasechemistry.chemical_classificationbiologyGluconacetobacter xylinusHydrolysisMembranes ArtificialGeneral Medicine021001 nanoscience & nanotechnologybiology.organism_classificationEnzymes Immobilizedbeta-GalactosidaseEnzyme binding030104 developmental biologyEnzymeProtein immobilizationchemistryBiochemistryBacterial celluloseThermotoga maritimaPyrococcus furiosusCarbohydrate-binding module0210 nano-technology
researchProduct

Acetobacter musti sp. nov., isolated from Bobal grape must

2016

An acetic acid bacterium (strain Bo7T), obtained during a study of the microbial diversity of spontaneous fermentations of Bobal grape must, was subjected to a taxonomic study using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences allocated strain Bo7T to the genus Acetobacter, and revealed Acetobacter aceti and Acetobacter oeni to be nearest neighbours (99.57 % 16S rRNA gene sequence similarity between strain Bo7T and A. oeni CECT 5830T, and 98.76 % between strain Bo7T and A. aceti CECT 298T). Cells of strain Bo7T are Gram-negative, motile rods, catalase-positive and oxidase-negative. The DNA G+C content of strain Bo7T was 58.0 mol%. DNA–DNA hybridizations demo…

0301 basic medicinechemistry.chemical_classificationPhylogenetic treebiologyStrain (chemistry)food and beveragesFatty acidGeneral MedicineMaltose16S ribosomal RNAbiology.organism_classificationMicrobiology03 medical and health scienceschemistry.chemical_compound030104 developmental biologychemistryBotanyYeast extractlipids (amino acids peptides and proteins)Ecology Evolution Behavior and SystematicsBacteriaAcetobacter acetiInternational Journal of Systematic and Evolutionary Microbiology
researchProduct

Estudo de bacterias aceticas de usina de açucar e alcool

2021

Orientador: Silvia Yuko Eguchi Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos Resumo: Bactérias acéticas do gênero Acetobacter foram identificadas em Usina de Açúcar e Álcool. Do total de 32 linhagens classificadas como Acetobacter sp, 11 (34,37 %) foram isoladas da peneira do "Cush-Cush", 3 (9,38 %) foram isoladas da parede do tanque de coleta do caldo de cana recém peneirado no "CushCush", 15 (46,87 %) foram isoladas do caldo de cana recém peneirado e 3 (9,38 %) foram isoladas da parede do Separador. As linhagens identificadas como bactérias acéticas foram testadas quanto a capacidade fermentativa em processo descontínuo. A taxa específica…

AcetobacterBactérias aeróbiasÁcido acético
researchProduct

Start-Up of Chitosan-Assisted Anaerobic Sludge Bed Reactors Treating Light Oxygenated Solvents under Intermittent Operation

2021

Quality of the granular sludge developed during the start-up of anaerobic up-flow sludge bed reactors is of crucial importance to ensure the process feasibility of treating industrial wastewater such as those containing solvents. In this study, the microbial granule formation from suspended-growth biomass was investigated in two chitosan-assisted reactors. These reactors operated mimicking industrial sites working with night closures treating a mixture of ethanol, ethyl acetate, and 1-ethoxy-2-propanol. Each reactor operated under different hydrodynamic regimes typical from UASB (R1: &lt

Health Toxicology and Mutagenesis0208 environmental biotechnologyEthyl acetate02 engineering and technology010501 environmental sciencesWaste Disposal Fluid01 natural sciencescomplex mixturesArticleIndustrial wastewater treatmentchemistry.chemical_compoundGranulationBioreactorsgranulationAcetobacteriumAigües residualsAnaerobiosis0105 earth and related environmental sciencesSewagebiologyChemistryGranule (cell biology)RPublic Health Environmental and Occupational Healthtechnology industry and agriculturehigh-throughput sequencingbiology.organism_classificationPulp and paper industryequipment and suppliesDesulfovibriointermittent feedingInnovacions tecnològiques020801 environmental engineeringsolventsMedicineEnginyeria ambientalanaerobic reactorschitosanAnaerobic exerciseGeobacterInternational Journal of Environmental Research and Public Health
researchProduct

Microbial Dynamics between Yeasts and Acetic Acid Bacteria in Kombucha: Impacts on the Chemical Composition of the Beverage.

2020

Kombucha is a traditional low-alcoholic beverage made from sugared tea and transformed by a complex microbial consortium including yeasts and acetic acid bacteria (AAB). To study the microbial interactions and their impact on the chemical composition of the beverage, an experimental design with nine couples associating one yeast strain and one AAB strain isolated from original black tea kombucha was set up. Three yeast strains belonging to the genera Brettanomyces, Hanseniaspora, and Saccharomyces and three strains of Acetobacter and Komagataeibacter species were chosen. Monocultures in sugared tea were analyzed to determine their individual microbial behaviors. Then, cultivation of the ori…

KombuchaHealth (social science)BrettanomycesyeastsPlant Sciencelcsh:Chemical technologyHanseniasporaHealth Professions (miscellaneous)MicrobiologySaccharomycesArticle03 medical and health sciences[SDV.IDA]Life Sciences [q-bio]/Food engineeringlcsh:TP1-1185[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biologyacetic acid bacteriaFood scienceAcetic acid bacteria030304 developmental biology2. Zero hunger0303 health sciencesbiology030306 microbiologyChemistrypellicleMicrobial consortiuminteractionsbiology.organism_classificationsucrose hydrolysisYeastsymbiosiskombuchaAcetobacterFood ScienceFoods (Basel, Switzerland)
researchProduct

Development of self-assembled bacterial cellulose–starch nanocomposites

2009

Abstract A bioinspired bottom-up process was developed to produce self-assembled nanocomposites of cellulose synthesized by Acetobacter bacteria and native starch. This process takes advantage of the way some bacteria extrude cellulose nanofibres and of the transport process that occurs during the gelatinization of starch. Potato and corn starch were added into the culture medium and partially gelatinized in order to allow the cellulose nanofibrils to grow in the presence of a starch phase. The bacterial cellulose (BC)–starch gels were hot pressed into sheets that had a BC volume fraction higher than 90%. During this step starch was forced to further penetrate the BC network. The self-assem…

Materials scienceNanocompositebiologyStarchfood and beveragesBioengineeringNanotechnologybiology.organism_classificationBiomaterialschemistry.chemical_compoundCrystallinitychemistryChemical engineeringMechanics of MaterialsBacterial celluloseVolume fractionCelluloseAcetobacterEnvironmental scanning electron microscopeMaterials Science and Engineering: C
researchProduct

Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria

2016

Bacterial cellulose (BC) samples were obtained using two culture media (glucose and glucose+fructose) and two bacteria (Komagataeibacter rhaeticus and Komagataeibacter hansenii). Nanopaper was obtained from the BC through oxidation and both were studied to determine the impact of culture media and bacteria strain on nanofiber structure and mechanical properties. AFM and SEM were used to investigate fibre dimensions and network morphology; FTIR and XRD to determine cellulose purity and crystallinity; carboxyl content, degree of polymerisation and zeta potential were used to characterise nanofibers. Tensile testing showed that nanopaper has up to 24 times higher Young's modulus (7.39GPa) than…

PaperPolymers and PlasticsNanofibersFructose02 engineering and technology010402 general chemistry01 natural sciencesAcetobacteraceaechemistry.chemical_compoundCrystallinityX-Ray DiffractionSpectroscopy Fourier Transform InfraredPolymer chemistryMaterials ChemistryZeta potentialFourier transform infrared spectroscopyCelluloseCelluloseAcetic acid bacteriabiologyOrganic Chemistry021001 nanoscience & nanotechnologybiology.organism_classification0104 chemical sciencesGlucosechemistryBacterial celluloseNanofiberAcetobacteraceae0210 nano-technologyNuclear chemistryCarbohydrate Polymers
researchProduct

Bacterial 2,3-butanediol dehydrogenases

1978

Enterobacter aerogenes, Aeromonas hydrophila, Serratia marcescens and Staphylococcus aureus possessing L(+)-butanediol dehydrogenase produced mainly meso-butanediol and small amounts of optically active butanediol; Acetobacter suboxydans, Bacillus polymyxa and Erwinia carotovora containing D(-)-butanediol dehydrogenase produced more optically active butanediol than meso-butanediol. Resting and growing cells of these organisms oxidezed only one enantiomer of racemic butanediol. The D(-)-butanediol dehydrogenase from Bacillus polymyxa was partially purified (30-fold) with a specific activity of 24.5. Except NAD and NADH no other cofactors were required. Optimum pH-values for oxidation and red…

Staphylococcus aureusEnterobacterBacillusDehydrogenaseBiologyEnterobacter aerogenesBiochemistryMicrobiologyCofactorchemistry.chemical_compoundGenetics23-ButanediolAcetobacterButylene GlycolsMolecular BiologySerratia marcescensChromatographyBacteriaCell-Free SystemAcetoinAcetoinTemperatureGeneral MedicineHydrogen-Ion Concentrationbiology.organism_classificationDiacetylAlcohol OxidoreductaseschemistryBiochemistryButanediolbiology.proteinErwiniaAeromonasNAD+ kinaseOxidation-ReductionArchives of Microbiology
researchProduct