Search results for "Acox1"
showing 6 items of 16 documents
Prevention by Dietary Polyphenols (Resveratrol, Quercetin, Apigenin) Against 7-Ketocholesterol-Induced Oxiapoptophagy in Neuronal N2a Cells: Potentia…
2020
The Mediterranean diet is associated with health benefits due to bioactive compounds such as polyphenols. The biological activities of three polyphenols (quercetin (QCT), resveratrol (RSV), apigenin (API)) were evaluated in mouse neuronal N2a cells in the presence of 7-ketocholesterol (7KC), a major cholesterol oxidation product increased in patients with age-related diseases, including neurodegenerative disorders. In N2a cells, 7KC (50 µ
Peroxisomal and mitochondrial status of two murine oligodendrocytic cell lines (158N, 158JP): potential models for the study of peroxisomal disorders…
2009
International audience; In some neurodegenerative disorders (leukodystrophies) characterized by myelin alterations, the defect of peroxisomal functions on myelin-producing cells (oligodendrocytes) are poorly understood. The development of in vitro models is fundamental to understanding the physiopathogenesis of these diseases. We characterized two immortalized murine oligodendrocyte cell lines: a normal (158N) and a jimpy (158JP) cell line mutated for the proteolipid protein PLP/DM20. Fluorescence microscopy, flow cytometry, and western blotting analysis allow to identify major myelin proteins (PLP colocalizing with mitochondria; myelin basic protein), oligodendrocyte (CNPase and myelin oli…
Biochemical characterization of two functional human liver acyl-CoA oxidase isoforms 1a and 1b encoded by a single gene
2007
Abstract Human acyl-CoA oxidase 1 (ACOX1) is a rate-limiting enzyme in peroxisomal fatty acids β-oxidation and its deficiency is associated with a lethal, autosomal recessive disease, called pseudoneonatal-adrenoleukodystrophy. Two mRNA variants, transcribed from a single gene encode ACOX1a or ACOX1b isoforms, respectively. Recently, a mutation in a splice site has been reported [H. Rosewich, H.R. Waterham, R.J. Wanders, S. Ferdinandusse, M. Henneke, D. Hunneman, J. Gartner, Pitfall in metabolic screening in a patient with fatal peroxisomal β-oxidation defect, Neuropediatrics 37 (2006) 95–98.], which results in the defective peroxisomal fatty acids β-oxidation. Here, we show that these mRNA…
Evidence of oxidative stress in very long chain fatty acid--treated oligodendrocytes and potentialization of ROS production using RNA interference-di…
2011
X-linked adrenoleukodystrophy (X-ALD) and pseudo neonatal adrenoleukodystrophy (P-NALD) are neurodegenerative demyelinating diseases resulting from the functional loss of the peroxisomal ATP-binding cassette transporter D (ABCD1) and from single peroxisomal enzyme deficiency (Acyl-CoA oxidase1: ACOX1), respectively. As these proteins are involved in the catabolism of very long chain fatty acids (VLCFA: C24:0, C26:0), X-ALD and P-NALD patients are characterized by the accumulation of VLCFA in plasma and tissues. Since peroxisomes are involved in the metabolism of reactive oxygen species (ROS) and nitrogen species (RNS), we examined the impact of VLCFA on the oxidative status of 158N murine o…
Modulation of peroxisomes abundance by argan oil and lipopolysaccharides in acyl-CoA oxidase 1-deficient fibroblasts
2013
Pseudo-neonatal adrenoleukodystrophy (P-NALD) is a neurodegenerative disorder caused by acyl-CoA oxidase 1 (ACOX1) deficiency with subsequent impairment of peroxisomal fatty acid β-oxidation, accumulation of very long chain fatty acids (VLCFAs) and strong reduction in peroxisome abundance. Increase in peroxisome number has been previously suggested to improve peroxisomal disorders, and in this perspective, the present work was aimed at exploring whether modulation of peroxisomes abundance could be achieved in P-NALD fibroblasts. Here we showed that treatment with the natural Argan oil induced peroxisome proliferation in P-NALD fibroblasts. This induction was independent on activations of bo…
Disturbances in cholesterol, bile acid and glucose metabolism in peroxisomal 3-ketoacylCoA thiolase B deficient mice fed diets containing high or low…
2014
SPE IPM UB; International audience; : The peroxisomal 3-ketoacyl-CoA thiolase B (ThB) catalyzes the thiolytic cleavage of straight chain 3-ketoacyl-CoAs. Up to now, the ability of ThB to interfere with lipid metabolism was studied in mice fed a routinely laboratory chow enriched or not with the synthetic agonist Wy14,643, a pharmacological activator of the nuclear hormone receptor PPARα. The aim of the present study was therefore to determine whether ThB could play a role in obesity and lipid metabolism when mice are chronically fed a synthetic High Fat Diet (HFD) or a Low Fat Diet (LFD) as a control diet. To investigate this possibility, wild-type (WT) mice and mice deficient for Thb (Thb(…