Search results for "Acrylonitrile"

showing 10 items of 67 documents

CCDC 897056: Experimental Crystal Structure Determination

2015

Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G

Space GroupCrystallographyCrystal System3-(ethylamino)-3-(methylsulfanyl)-2-(phenylsulfonyl)acrylonitrileCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 897061: Experimental Crystal Structure Determination

2015

Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G

Space GroupCrystallographyCrystal SystemCrystal Structure3-((4-methoxyphenyl)amino)-3-(methylsulfanyl)-2-(phenylsulfonyl)acrylonitrileCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 897059: Experimental Crystal Structure Determination

2015

Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters3-((4-fluorophenyl)amino)-3-(methylsulfanyl)-2-(phenylsulfonyl)acrylonitrileExperimental 3D Coordinates
researchProduct

CCDC 897058: Experimental Crystal Structure Determination

2015

Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters3-(benzylamino)-3-(methylsulfanyl)-2-(phenylsulfonyl)acrylonitrileExperimental 3D Coordinates
researchProduct

Precursor Polymers for the Carbon Coating of Au@ZnO Multipods for Application as Active Material in Lithium-Ion Batteries

2014

The synthesis of statistical and block copolymers based on polyacrylonitrile, as a source for carbonaceous materials, and thiol-containing repeating units as inorganic nanoparticle anchoring groups is reported. These polymers are used to coat Au@ZnO multipod heteroparticles with polymer brushes. IR spectroscopy and transmission electron microscopy prove the successful binding of the polymer onto the inorganic nanostructures. Thermogravimetric analysis is applied to compare the binding ability of the block and statistical copolymers. Subsequently, the polymer coating is transformed into a carbonaceous (partially graphitic) coating by pyrolysis. The obtained carbon coating is characterized by…

Thermogravimetric analysisMaterials sciencePolymers and PlasticsPolymersInorganic chemistryAcrylic ResinsMetal NanoparticlesInfrared spectroscopyNanoparticleLithiumengineering.materialchemistry.chemical_compoundsymbols.namesakeElectric Power SuppliesMicroscopy Electron TransmissionCoatingMaterials ChemistryElectrodesIonschemistry.chemical_classificationOrganic ChemistryPolyacrylonitrileSpectrometry X-Ray EmissionElectrochemical TechniquesPolymerCarbonchemistryengineeringsymbolsGoldZinc OxideRaman spectroscopyPyrolysisMacromolecular Rapid Communications
researchProduct

Effect of potential antidotes on the acute toxicity of acrylonitrile

1981

Rats were intoxicated with lethal doses of acrylonitrile by different routes of application, and the effect of potential antidotes was studied. The cyanide antidotes 4-dimethylaminophenol plus thiosulfate showed some protective effect only after oral but not after i.p. or inhalatory acrylonitrile application. Of the sulfhydryl compounds cysteine, N-acetylcysteine, cysteamine and diethyldithiocarbamate the two antidotes cysteine and, to some lesser extent, N-acetylcysteine proved especially effective. Cysteine, at a dose of 200 mg/kg (i.p.), prevented the lethal effect of 100 mg/kg acrylonitrile (i.p.) even when given 2 h after the acrylonitrile dose. From these experiments a tentative sched…

Thiosulfatemedicine.medical_treatmentPublic Health Environmental and Occupational HealthPharmacologyAcute toxicitychemistry.chemical_compoundchemistrymedicineOrganic chemistryCysteamineAcrylonitrileAntidoteCysteineCYANIDE ANTIDOTESInternational Archives of Occupational and Environmental Health
researchProduct

Synergistic effects of Janus particles and triblock terpolymers on toughness of immiscible polymer blends

2017

Abstract By influencing both the interfacial adhesion and the morphology, compatibilizers determine the mechanical properties of polymer blends. Here, we study the mechanical properties, in particular the fatigue crack propagation (FCP) of immiscible blends of poly(2,6-dimethyl-1,4-phenylene ether)/poly(styrene- co -acrylonitrile) (PPE/SAN), compatibilized with Janus nanoparticles (JPs) and linear polystyrene- block -polybutadiene- block -poly(methyl methacrylate) (SBM) triblock terpolymers. Synergistic effects of a mixture of both compatibilizers improve the FCP behavior and reveal the important role of interface stiffness and flexibility on the mechanical properties of polymer blends. The…

ToughnessMaterials sciencePolymers and Plasticsta221Janus particlesJanus particles02 engineering and technology010402 general chemistry01 natural sciencesStyrenechemistry.chemical_compoundPolymer blendsMaterials ChemistryCopolymerComposite materialMethyl methacrylateta114Organic ChemistryFracture toughness021001 nanoscience & nanotechnology0104 chemical scienceschemistryMicromechanicsPolystyrenePolymer blendAcrylonitrile0210 nano-technologyCompatibilizationPolymer
researchProduct

Rare earth metal-based catalysts for the polymerization of nonpolar and polar monomers

2001

Abstract The synthesis of rare earth metal half-sandwich hydrido complexes [Ln (h5:h1-C5Me 4SiMe2NCMe3) (THF) (µ-H) ] 2 (Ln = Y, Lu) through s-bond metathesis of the easily accessible alkyl complexes [Ln (h5:h1-C5Me 4SiMe2NCMe3) (CH2 SiMe3) (THF) ] was developed. The dimeric yttrium hydrido complexes are highly fluxional, and a monomer-dimer equilibrium is present. They were tested as single-site, single-component catalysts for the polymerization of ethylene and styrene, as well as alkyl acrylate and acrylonitrile. The hydrido complexes polymerize ethylene slowly and form isolable mono (insertion) products with styrene. The yttrium n-alkyl complexes [Y (h5:h1-C5Me 4SiMe2NCMe3) (R) (THF) ] […

chemistry.chemical_classificationEthyleneGeneral Chemical Engineeringchemistry.chemical_elementGeneral ChemistryYttriumMetathesisStyrenechemistry.chemical_compoundMonomerchemistryPolymerizationPolymer chemistryAcrylonitrileAlkylPure and Applied Chemistry
researchProduct

Über den mechanismus der anionischen polymerisation von acrylnitril mit triphenylphosphin. 7. Mitt. über makrozwitterionen

1972

Die anionische Polymerisation von Acrylnitril mit Triathylphosphin als Initiator in Dimethylformamid wurde bei verschiedenen Temperaturen und unterschiedlichem Verhaltnis der Monomer/Initiator-Konzentrationen untersucht. Erganzt durch spektroskopische Endgruppenbestimmung der Polymeranionen konnte mittels 1H-NMR-Spektroskopie und Gelchromatographie (GPC) sowie emissionsspektralanalytischer Phosphorbestimmung an den rohen und den durch Umfallungen bzw. GPC fraktionierten Polymerproben gezeigt werden, das hier neben einer ubertragung teilweise eine Polymerisation Uber Makrozwitterionen auftritt. Fur die Bildung von Makrozwitterionen, , sind jedoch Mindestwerte des Monomer/Initiator-Verhaltnis…

chemistry.chemical_classificationGel permeation chromatographychemistry.chemical_compoundEnd-groupAnionic addition polymerizationMonomerPolymerizationChemistryZwitterionPolymer chemistryPolymerAcrylonitrileDie Makromolekulare Chemie
researchProduct

Rare Earth Half-Sandwich Catalysts for the Homo- and Copolymerization of Ethylene and Styrene

2001

The synthesis of rare earth metal half-sandwich hydrido complexes [Ln(η5:η1-C5Me4SiMe2NCMe3)(THF)(μ-H)]2(Ln = Y, Lu, Yb, Er, Tb) through σ-bond metathesis of the alkyl complexes [Ln(η5:η1- C5Me4SiMe2NCMe3)(CH2SiMe3)(THF)], easily accessible by the reaction of the amino-cyclopentadiene with [Ln(CH2SiMe3)3(THF)2], was developed. The dimeric lanthanide hydrido complexes are highly fluxional involving THF dissociation and cis-trans isomerization of the linked amidocyclopentadienyl ligand. The presence of a monomer-dimer equilibrium is suggested by cross-over experiments. They were tested as single-site, single-component catalysts for the polymerization of ethylene, α-olefin, and styrene, as wel…

chemistry.chemical_classificationLanthanidechemistry.chemical_compoundAcrylateEthyleneMaterials sciencePolymerizationchemistryPolymer chemistryCopolymerAcrylonitrileAlkylStyrene
researchProduct