Search results for "Acyl-CoA"

showing 10 items of 42 documents

Targeted disruption of the peroxisomal thiolase B gene in mouse: a new model to study disorders related to peroxisomal lipid metabolism

2004

The peroxisomal beta-oxidation system consists of four steps catalysed by three enzymes: acyl-CoA oxidase, 3-hydroxyacyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase (multifunctional enzyme) and thiolase. In humans, thiolase activity is encoded by one gene, whereas in rodents, three enzymes encoded by three distinct genes (i.e. thiolase A, thiolase B and SCP2/thiolase) catalyse the thiolase activity. So far, acyl-CoA oxidase- and multifunctional enzyme-deficient patients have been identified and knock-out mice for these genes have been produced. Conversely, no isolated thiolase-deficient patient has been found, and no thiolase (A or B)-deficient mice have been generated. Hence, to better u…

DehydrogenaseBiologymedicine.disease_causeBiochemistryGene Expression Regulation EnzymologicPeroxisomal DisordersMiceStructure-Activity RelationshipPeroxisomesmedicineAnimalsHumansRNA MessengerGeneHydro-LyasesSCP2chemistry.chemical_classificationMutationOxidase testThiolaseStem Cells3-Hydroxyacyl CoA DehydrogenasesGeneral MedicinePeroxisomeAcetyl-CoA C-AcyltransferaseEmbryo MammalianLipid MetabolismMolecular biologyMice Mutant StrainsMice Inbred C57BLDisease Models AnimalPhenotypeEnzymechemistryBiochemistryAcyl-CoA OxidaseBiochimie
researchProduct

Functional significance of the two ACOX1 isoforms and their crosstalks with PPARα and RXRα

2010

Disruption of the peroxisomal acyl-CoA oxidase 1 (Acox1) gene in the mouse results in the development of severe microvesicular hepatic steatosis and sustained activation of peroxisome proliferator-activated receptor-alpha (PPARalpha). These mice manifest spontaneous massive peroxisome proliferation in regenerating hepatocytes and eventually develop hepatocellular carcinomas. Human ACOX1, the first and rate-limiting enzyme of the peroxisomal beta-oxidation pathway, has two isoforms including ACOX1a and ACOX1b, transcribed from a single gene. As ACOX1a shows reduced activity toward palmitoyl-CoA as compared with ACOX1b, we used adenovirally driven ACOX1a and ACOX1b to investigate their effica…

Gene isoformRegulation of gene expressionmedicine.medical_specialtyTransgenePeroxisome ProliferationCell BiologyPeroxisomeBiologyPathology and Forensic Medicinechemistry.chemical_compoundEndocrinologychemistryInternal medicinemedicineACOX1Acyl-CoA oxidaseMolecular BiologyNervonic acidLaboratory Investigation
researchProduct

Peroxisomal changes during hiberation of jerboa (Jaculus orientalis)

1998

As a member of the order of Rodentia, jerboa (Jaculus orientalis) is a natural deep hibernator and lives in subdesert highland in many parts of the world, including Morocco. Its small size (adult body weight ∼100 g), availability in the wild, tolerance to laboratory conditions, and some unique peroxisomal properties make it a suitable research subject for exploring peroxisome biogenesis under prehibernating and hibernating states. During 3 w, animals referred to as the prehibernator group were exposed to cold temperature (5 to 7°C) with food ad libitum. Part of the prehibernator group entered deep hibernation 24 to 48 h after starvation. Animals were sacrificed 4 and 6 d after starting hibe…

HibernationOxidase testmedicine.medical_specialtybiologyGeneral Chemical EngineeringOrganic ChemistryAcyl CoA dehydrogenaseUrate oxidaseMetabolismPeroxisomebiology.organism_classificationEndocrinologyInternal medicinebiology.proteinmedicineAcyl-CoA oxidaseJaculus orientalisJournal of the American Oil Chemists' Society
researchProduct

Peroxisome proliferator-activated receptors as regulators of lipid metabolism; tissue differential expression in adipose tissues during cold acclimat…

2004

Brown (BAT) and white (WAT) adipose tissues play a key role in the body energy balance orchestrated by the central nervous system. Hibernators have developed a seasonal obesity to respond to inhospitable environment. Jerboa is one of the deep hibernator originated from sub-desert highlands. Thus, this animal represents an excellent model to study cold adaptation mechanism. We report that the adipogenic factor PPARgamma exhibits a differential expression between BAT and WAT at mRNA level. A specific induction was only seen in WAT of pre-hibernating jerboa. Interestingly, PPAR beta/delta is specifically induced in BAT and brain of pre-hibernating jerboa, highlighting for the first time the po…

Hibernationmedicine.medical_specialtyAcclimatizationPeroxisome Proliferator-Activated ReceptorsPeroxisome proliferator-activated receptorAdipose tissueRodentiaWhite adipose tissueBiologyBiochemistryAcyl-CoA DehydrogenaseIon ChannelsMitochondrial ProteinsClofibric AcidInternal medicineHibernationBrown adipose tissuemedicineAcyl-CoA oxidaseAnimalsRNA MessengerUncoupling Protein 1chemistry.chemical_classificationFibric AcidsMembrane ProteinsGeneral MedicineLipid MetabolismLipidsMitochondriaCold TemperatureEndocrinologymedicine.anatomical_structurechemistryAdipose TissueGene Expression RegulationPhospholipasesCiprofibrateAcyl-CoA OxidaseCarrier ProteinsEnergy MetabolismOxidoreductasesThermogenesismedicine.drugBiochimie
researchProduct

Fibroblast Growth Factor 21 Limits Lipotoxicity by Promoting Hepatic Fatty Acid Activation in Mice on Methionine and Choline-Deficient Diets

2014

Background & Aims Nonalcoholic fatty liver disease is a common consequence of human and rodent obesity. Disruptions in lipid metabolism lead to accumulation of triglycerides and fatty acids, which can promote inflammation and fibrosis and lead to nonalcoholic steatohepatitis. Circulating levels of fibroblast growth factor (FGF)21 increase in patients with nonalcoholic fatty liver disease or nonalcoholic steatohepatitis; therefore, we assessed the role of FGF21 in the progression of murine fatty liver disease, independent of obesity, caused by methionine and choline deficiency. Methods C57BL/6 wild-type and FGF21-knockout (FGF21-KO) mice were placed on methionine- and choline-deficient (MCD)…

Liver Cirrhosismedicine.medical_specialtyTime FactorsBiologyInfusions SubcutaneousSeverity of Illness IndexArticleHepatitischemistry.chemical_compoundAcyl-CoAMethionineNon-alcoholic Fatty Liver DiseaseInternal medicineNonalcoholic fatty liver diseasemedicineAnimalsRNA MessengerMice Knockoutchemistry.chemical_classificationHepatologyFatty acid metabolismFatty AcidsFatty liverGastroenterologyFatty acidmedicine.diseaseRecombinant ProteinsCholine DeficiencyFibroblast Growth FactorsMice Inbred C57BLDisease Models AnimalEndocrinologyLiverchemistryLipotoxicityDisease ProgressionLipid PeroxidationInflammation MediatorsSteatosisLong chain fatty acidOxidation-ReductionGastroenterology
researchProduct

Evaluation of acyl coenzyme A oxidase (Aox) isozyme function in the n- alkane-assimilating yeast Yarrowia lipolytica

1999

ABSTRACT We have identified five acyl coenzyme A (CoA) oxidase isozymes (Aox1 through Aox5) in the n -alkane-assimilating yeast Yarrowia lipolytica , encoded by the POX1 through POX5 genes. The physiological function of these oxidases has been investigated by gene disruption. Single, double, triple, and quadruple disruptants were constructed. Global Aox activity was determined as a function of time after induction and of substrate chain length. Single null mutations did not affect growth but affected the chain length preference of acyl-CoA oxidase activity, as evidenced by a chain length specificity for Aox2 and Aox3. Aox2 was shown to be a long-chain acyl-CoA oxidase and Aox3 was found to …

MESH : Escherichia coliMESH: Sequence Analysis DNAMESH : Molecular Sequence DataMutantGene ExpressionMESH: Base Sequencechemistry.chemical_compoundCloning Molecular[INFO.INFO-BT]Computer Science [cs]/BiotechnologyDNA FungalMESH: MutagenesisMESH : IsoenzymesOxidase testbiologyMESH: Escherichia coliMESH: Acyl-CoA OxidaseMESH : MutagenesisMESH : Cell DivisionMESH : OxidoreductasesIsoenzymesBlotEukaryotic Cells[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyFungalBiochemistryMESH: IsoenzymesMESH: Cell DivisionMESH : Acyl-CoA OxidaseOxidoreductasesSequence Analysis[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyCell DivisionMESH: Gene ExpressionMESH : Cloning MolecularGenes FungalMolecular Sequence DataMicrobiologyIsozymeWESTERN BLOTTINGAlkanes[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyEscherichia coliMESH: Cloning Molecular[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: OxidoreductasesMESH: Saccharomycetales[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyMolecular BiologyGeneMESH : AlkanesMESH: Molecular Sequence DataBase SequenceMolecularYarrowiaSequence Analysis DNAMESH : SaccharomycetalesDNAbiology.organism_classificationMolecular biologyYeastMESH : Gene ExpressionMESH: AlkanesMESH: DNA FungalOleic acid[INFO.INFO-BT] Computer Science [cs]/BiotechnologyGeneschemistryMutagenesisSaccharomycetalesMESH : Base SequenceMESH : Genes FungalAcyl-CoA OxidaseMESH : DNA FungalMESH: Genes FungalMESH : Sequence Analysis DNACloning
researchProduct

Modulation of the hepatic fatty acid pool in peroxisomal 3-ketoacyl-CoA thiolase B-null mice exposed to the selective PPARalpha agonist Wy14,643

2009

10 pages; International audience; The peroxisomal 3-ketoacyl-CoA thiolase B (Thb) gene was previously identified as a direct target gene of PPARalpha, a nuclear hormone receptor activated by hypolipidemic fibrate drugs. To better understand the role of ThB in hepatic lipid metabolism in mice, Sv129 wild-type and Thb null mice were fed or not the selective PPARalpha agonist Wy14,643 (Wy). Here, it is shown that in contrast to some other mouse models deficient for peroxisomal enzymes, the hepatic PPARalpha signaling cascade in Thb null mice was normal under regular conditions. It is of interest that the hypotriglyceridemic action of Wy was reduced in Thb null mice underlining the conclusion t…

MESH : RNA MessengerMESH: Microsomes LiverMESH : PyrimidinesMono-unsaturated fatty acids n-7 and n-9MESH : Hepatocytes[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyMESH: Mice KnockoutPPARαBiochemistryMESH: Acetyl-CoA C-AcetyltransferaseStearoyl-CoA desaturase-1MESH: HepatocytesMicechemistry.chemical_compoundMESH : Lipid MetabolismWy14MESH: AnimalsPeroxisomal 3-ketoacyl-CoA thiolase BAcetyl-CoA C-AcetyltransferaseMESH: PPAR alphaMESH : Fatty AcidsMESH: Lipid MetabolismMice Knockoutchemistry.chemical_classificationThiolaseFatty Acids643General MedicinePeroxisomeMESH : Stearoyl-CoA DesaturaseMESH: Fatty AcidsMESH : Microsomes LiverMESH : Acetyl-CoA C-AcetyltransferaseMicrosomes LiverMono-unsaturated fatty acids n-7 and n-9; Peroxisomal 3-ketoacyl-CoA thiolase B; PPARα; Stearoyl-CoA desaturase-1; Wy14643lipids (amino acids peptides and proteins)Stearoyl-CoA DesaturasePolyunsaturated fatty acidmedicine.medical_specialtyMESH : PPAR alphaMESH : Mice Inbred C57BL[ SDV.BBM.BM ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyBiologyMESH: Mice Inbred C57BLInternal medicineMESH : MicePeroxisomesmedicineAnimalsHumansPPAR alphaRNA MessengerMESH: MiceMESH: RNA MessengerSCP2MESH: HumansMESH : HumansFatty acid[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyStearoyl-CoALipid MetabolismMESH: PeroxisomesSterol regulatory element-binding proteinMice Inbred C57BLPyrimidinesEndocrinologychemistryMESH: PyrimidinesMESH: Stearoyl-CoA DesaturaseHepatocytesMESH : Mice KnockoutMESH : AnimalsStearoyl-CoA desaturase-1MESH : PeroxisomesBiochimie
researchProduct

The Inflammatory Response in Acyl-CoA Oxidase 1 Deficiency (Pseudoneonatal Adrenoleukodystrophy)

2012

Among several peroxisomal neurodegenerative disorders, the pseudoneonatal adrenoleukodystrophy (P-NALD) is characterized by the acyl-coenzyme A oxidase 1 (ACOX1) deficiency, which leads to the accumulation of very-long-chain fatty acids ( VLCFA) and inflammatory demyelination. However, the components of this inflammatory process in P-NALD remain elusive. In this study, we used transcriptomic profiling and PCR array analyses to explore inflammatory gene expression in patient fibroblasts. Our results show the activation of IL-1 inflammatory pathway accompanied by the increased secretion of two IL-1 target genes, IL-6 and IL-8 cytokines. Human fibroblasts exposed to very-long-chain fatty acids…

MESH: Inflammationperoxisomal disordersMESH: Osteopontinmedicine.medical_treatmentMESH : ImmunohistochemistryMESH : Transcriptomechemokine receptorsVoeding Metabolisme en Genomica0302 clinical medicineEndocrinologyMESH: Reverse Transcriptase Polymerase Chain ReactionAcyl-CoA oxidasemultiple-sclerosis lesionsMESH : OsteopontinMESH : Fatty AcidsCells CulturedOligonucleotide Array Sequence Analysis[SDV.MHEP.EM] Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism0303 health sciencesOxidase testMESH : Gene Expression RegulationReverse Transcriptase Polymerase Chain ReactionFatty AcidsMESH: Acyl-CoA OxidaseMESH : Reverse Transcriptase Polymerase Chain ReactionPeroxisome[SDV.MHEP.EM]Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism[ SDV.MHEP.EM ] Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolismImmunohistochemistryMESH: Gene Expression RegulationMetabolism and Genomics3. Good healthMESH: Fatty AcidsMESH : Oligonucleotide Array Sequence AnalysisCytokineMetabolisme en GenomicaACOX1AdrenoleukodystrophyNutrition Metabolism and GenomicsMESH : Acyl-CoA Oxidasemedicine.symptomInflammation MediatorsMESH: Cells Culturedmedicine.medical_specialtyMESH : Interleukin-8MESH : Interleukin-6MESH: Inflammation MediatorsInflammationBiologyin-vitroMESH : Interleukin-1MESH : Inflammation Mediators03 medical and health sciencesVoedingInternal medicinePeroxisomal disordernf-kappa-bMESH : Cells CulturedMESH : Fibroblastsmedicine[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biologygene[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyNutrition030304 developmental biologyVLAGInflammationMESH: HumansMESH : InflammationInterleukin-6MESH: TranscriptomeInterleukin-8MESH : HumansMESH: Interleukin-1MESH: ImmunohistochemistryFibroblastsmedicine.diseaseMESH: Interleukin-6MESH: Interleukin-8EndocrinologyGene Expression RegulationMESH: FibroblastsMESH: Oligonucleotide Array Sequence AnalysiscellsBrief ReportsOsteopontinmicroarray analysisAcyl-CoA OxidaseTranscriptomeinterleukin-1030217 neurology & neurosurgeryx-linked adrenoleukodystrophyInterleukin-1
researchProduct

Peroxisomal beta-oxidation activities and gamma-decalactone production by the yeast Yarrowia lipolytica.

1998

International audience; gamma-Decalactone is a peachy aroma compound resulting from the peroxisomal beta-oxidation of ricinoleic acid by yeasts. The expression levels of acyl-CoA oxidase (gene deletion) and 3-ketoacyl-CoA thiolase activities (gene amplification on replicative plasmids) were modified in the yeast Yarrowia lipolytica. The effects of these modifications on beta-oxidation were measured. Overexpression of thiolase activity did not have any effect on the overall beta-oxidation activity. The disruption of one of the acyl-CoA oxidase genes resulted in an enhanced activity. The enhancement led to an increase of overall beta-oxidation activity but reduced the gamma-decalactone produc…

MESH: Oxidation-ReductionRicinoleic acidMESH: MicrobodiesMicrobodiesApplied Microbiology and BiotechnologyAROME DE PECHELactoneschemistry.chemical_compoundMESH : BiotransformationYeastsMESH : Microbodies[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyAcyl-CoA oxidaseMESH: Blotting NorthernNorthern[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology[INFO.INFO-BT]Computer Science [cs]/Biotechnology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyBiotransformationMESH : Oxidation-ReductionMESH: BiotransformationMESH : YeastsOxidase testbiologyBlottingCatabolismThiolaseMESH: YeastsMESH : Blotting NorthernYarrowiaGeneral MedicinePeroxisomeBlotting Northernbiology.organism_classificationYeastMESH : LactonesMESH: Ricinoleic Acids[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology[INFO.INFO-BT] Computer Science [cs]/BiotechnologyBiochemistrychemistryMESH : Ricinoleic AcidsACYL COA OXYDASERicinoleic AcidsOxidation-Reduction[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyMESH: LactonesBiotechnology
researchProduct

A human relevance investigation of PPARα-mediated key events in the hepatocarcinogenic mode of action of propaquizafop in rats

2018

Propaquizafop is an herbicide with demonstrated hepatocarcinogenic activity in rodents. A rodent-specific mode of action (MOA) in the liver via activation of peroxisome proliferator-activated receptor α (PPARα) has been postulated based on existing data. Experience with PPARα-inducing pharmaceuticals indicates a lack of human relevance of this MOA. The objective of the present investigation was to evaluate the dependency of early key events leading to liver tumors on PPARα activation in wildtype (WT) compared to PPARα-knockout (KO) rats following 2 weeks exposure to 75, 500 and 1000 ppm propaquizafop in the diet. In WT rats, both WY-14643 (50 mg/kg bw/day) and propaquizafop (dose-dependentl…

Male0301 basic medicinemedicine.medical_specialtyPeroxisome proliferator-activated receptor010501 environmental sciencesBiologyToxicologyRisk Assessment01 natural sciencesMuscle hypertrophyRats Sprague-Dawley03 medical and health sciencesCytochrome P-450 Enzyme SystemInternal medicinemedicineAnimalsHumansAcyl-CoA oxidasePPAR alphaRelevance (information retrieval)Enzyme inducerReceptorMode of actionCarcinogen0105 earth and related environmental scienceschemistry.chemical_classificationGlutathione PeroxidaseHerbicidesGlutathione peroxidaseLiver NeoplasmsOrgan SizeGeneral MedicineGlutathioneDiet030104 developmental biologyEndocrinologyLiverchemistrybiology.proteinKey (cryptography)Acyl-CoA OxidasePropionatesRats TransgenicNeuroscienceToxicology Letters
researchProduct