Search results for "Aerospace"
showing 10 items of 450 documents
Computational Analysis of the Active Control of Incompressible Airfoil Flutter Vibration Using a Piezoelectric V-Stack Actuator
2021
The flutter phenomenon is a potentially destructive aeroelastic vibration studied for the design of aircraft structures as it limits the flight envelope of the aircraft. The aim of this work is to propose a heuristic design of a piezoelectric actuator-based controller for flutter vibration suppression in order to extend the allowable speed range of the structure. Based on the numerical model of a three degrees of freedom (3DOF) airfoil and taking into account the FEM model of a V-stack piezoelectric actuator, a filtered PID controller is tuned using the population decline swarm optimizer PDSO algorithm, and gain scheduling (GS) of the controller parameters is used to make the control adapti…
Shock control bump design optimization on natural laminar aerofoil
2011
The chapter investigates Shock Control Bumps (SCB) on a Natural Laminar Flow (NLF) aerofoil; RAE 5243 for Active Flow Control (AFC). A SCB approach is used to decelerate supersonic flow on the suction/pressure sides of transonic aerofoil that leads delaying shock occurrence or weakening of shock strength. Such an AFC technique reduces significantly the total drag at transonic speeds. This chapter considers the SCB shape design optimisation at two boundary layer transition positions (0 and 45%) using an Euler software coupled with viscous boundary layer effects and robust Evolutionary Algorithms (EAs). The optimisation method is based on a canonical Evolution Strategy (ES) algorithm and inco…
Explicit Kutta Condition for Unsteady Two-Dimensional High-Order Potential Boundary Element Method
1997
An explicit unsteady pressure Kutta condition is discribed that was directly and efficiently implemented in a time domain high-order potential panel method so as to ensure the pressure equality on the upper and lower surfaces at the trailing edge of the airfoil at each time step.
CERN ELENA project progress report
2015
The Extra Low Energy Antiproton ring (ELENA) is a CERN project aiming at constructing a 30 m circumference synchrotron to further decelerate antiprotons from the Antiproton Decelerator (AD) from 5.3 MeV to 100 keV. The additional deceleration complemented by an electron cooler to reduce emittances will allow the existing AD experiments to increase substantially their antiproton capture efficiencies and render new experiments possible. The ELENA design is now well advanced and the project has entered the construction stage, in particular for what concerns the infrastructure. Installation of the machine components is foreseen during the second half of 2015 and beginning of 2016 followed by ri…
Non-linear oscillators under parametric and external poisson pulses
1994
The extended Ito calculus for non-normal excitations is applied in order to study the response behaviour of some non-linear oscillators subjected to Poisson pulses. The results obtained show that the non-normality of the input can strongly affect the response, so that, in general, it can not be neglected.
Filter approach to the stochastic analysis of MDOF wind-excited structures
1999
Abstract In this paper, an approach useful for stochastic analysis of the Gaussian and non-Gaussian behavior of the response of multi-degree-of-freedom (MDOF) wind-excited structures is presented. This approach is based on a particular model of the multivariate stochastic wind field based upon a particular diagonalization of the power spectral density (PSD) matrix of the fluctuating part of wind velocity. This diagonalization is performed in the space of eigenvectors and eigenvalues that are called here wind-eigenvalues and wind-eigenvectors, respectively. From the examination of these quantities it can be recognized that the wind-eigenvectors change slowly with frequency while the first wi…
Implementation of the chemistry module MECCA (v2.5) in the modal aerosol version of the Community Atmosphere Model component (v3.6.33) of the Communi…
2013
Abstract. A coupled atmospheric chemistry and climate system model was developed using the modal aerosol version of the National Center for Atmospheric Research Community Atmosphere Model (modal-CAM; v3.6.33) and the Max Planck Institute for Chemistry's Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA; v2.5) to provide enhanced resolution of multiphase processes, particularly those involving inorganic halogens, and associated impacts on atmospheric composition and climate. Three Rosenbrock solvers (Ros-2, Ros-3, RODAS-3) were tested in conjunction with the basic load-balancing options available to modal-CAM (1) to establish an optimal configuration of the implicitly-sol…
Design, construction and commissioning of the Braunschweig Icing Wind Tunnel
2018
Beyond its physical importance in both fundamental and climate research, atmospheric icing is considered as a severe operational condition in many engineering applications like aviation, electrical power transmission and wind-energy production. To reproduce such icing conditions in a laboratory environment, icing wind tunnels are frequently used. In this paper, a comprehensive overview on the design, construction and commissioning of the Braunschweig Icing Wind Tunnel is given. The tunnel features a test section of 0.5 m × 0.5 m with peak velocities of up to 40 m s−1. The static air temperature ranges from −25 to +30 °C. Supercooled droplet icing with liquid water contents up to 3 g m−3 c…
Report of the COSPAR Mars special regions colloquium
2010
International audience; In this paper we present the findings of a COSPAR Mars Special Regions Colloquium held in Rome in 2007. We review and discuss the definition of Mars Special Regions, the physical parameters used to define Mars Special Regions, and physical features on Mars that can be interpreted as Mars Special Regions. We conclude that any region experiencing temperatures > -25 degrees C for a few hours a year and a water activity > 0.5 can potentially allow the replication of terrestrial microorganisms. Physical features on Mars that can be interpreted as meeting these conditions constitute a Mars Special Region. Based on current knowledge of the martian environment and the conser…
Astrophysical neutrinos and cosmic rays observed by IceCube
2018
The core mission of the IceCube neutrino observatory is to study the origin and propagation of cosmic rays. IceCube, with its surface component IceTop, observes multiple signatures to accomplish this mission. Most important are the astrophysical neutrinos that are produced in interactions of cosmic rays, close to their sources and in interstellar space. IceCube is the first instrument that measures the properties of this astrophysical neutrino flux and constrains its origin. In addition, the spectrum, composition, and anisotropy of the local cosmic-ray flux are obtained from measurements of atmospheric muons and showers. Here we provide an overview of recent findings from the analysis of Ic…