Search results for "Affine transformation"
showing 10 items of 99 documents
Self-affine sets with fibered tangents
2016
We study tangent sets of strictly self-affine sets in the plane. If a set in this class satisfies the strong separation condition and projects to a line segment for sufficiently many directions, then for each generic point there exists a rotation $\mathcal O$ such that all tangent sets at that point are either of the form $\mathcal O((\mathbb R \times C) \cap B(0,1))$, where $C$ is a closed porous set, or of the form $\mathcal O((\ell \times \{ 0 \}) \cap B(0,1))$, where $\ell$ is an interval.
𝔸1-contractibility of affine modifications
2019
We introduce Koras–Russell fiber bundles over algebraically closed fields of characteristic zero. After a single suspension, this exhibits an infinite family of smooth affine [Formula: see text]-contractible [Formula: see text]-folds. Moreover, we give examples of stably [Formula: see text]-contractible smooth affine [Formula: see text]-folds containing a Brieskorn–Pham surface, and a family of smooth affine [Formula: see text]-folds with a higher-dimensional [Formula: see text]-contractible total space.
Dimension of self-affine sets for fixed translation vectors
2018
An affine iterated function system is a finite collection of affine invertible contractions and the invariant set associated to the mappings is called self-affine. In 1988, Falconer proved that, for given matrices, the Hausdorff dimension of the self-affine set is the affinity dimension for Lebesgue almost every translation vectors. Similar statement was proven by Jordan, Pollicott, and Simon in 2007 for the dimension of self-affine measures. In this article, we have an orthogonal approach. We introduce a class of self-affine systems in which, given translation vectors, we get the same results for Lebesgue almost all matrices. The proofs rely on Ledrappier-Young theory that was recently ver…
Extensions of Groups of Gauge Transformations
1989
In this chapter we shall discuss the structure of the infinite-dimensional Lie groups associated to the affine Kac-Moody algebras. We shall also construct the group of the current algebra of a gauge field theory in 3+1 space-time dimensions and we shall study the implications of the commutation relations for the spin-statistics relation in 3+1 dimensions.
Dorronsoro's theorem in Heisenberg groups
2020
A theorem of Dorronsoro from the 1980s quantifies the fact that real-valued Sobolev functions on Euclidean spaces can be approximated by affine functions almost everywhere, and at all sufficiently small scales. We prove a variant of Dorronsoro's theorem in Heisenberg groups: functions in horizontal Sobolev spaces can be approximated by affine functions which are independent of the last variable. As an application, we deduce new proofs for certain vertical vs. horizontal Poincare inequalities for real-valued functions on the Heisenberg group, originally due to Austin-Naor-Tessera and Lafforgue-Naor.
Self-affine sets in analytic curves and algebraic surfaces
2018
We characterize analytic curves that contain non-trivial self-affine sets. We also prove that compact algebraic surfaces do not contain non-trivial self-affine sets. peerReviewed
Compactifying Torus Fibrations Over Integral Affine Manifolds with Singularities
2021
This is an announcement of the following construction: given an integral affine manifold B with singularities, we build a topological space X which is a torus fibration over B. The main new feature of the fibration X → B is that it has the discriminant in codimension 2.
Local structure of self-affine sets
2011
The structure of a self-similar set with open set condition does not change under magnification. For self-affine sets the situation is completely different. We consider planar self-affine Cantor sets E of the type studied by Bedford, McMullen, Gatzouras and Lalley, for which the projection onto the horizontal axis is an interval. We show that within small square neighborhoods of almost each point x in E, with respect to many product measures on address space, E is well approximated by product sets of an interval and a Cantor set. Even though E is totally disconnected, the limit sets have the product structure with interval fibres, reminiscent to the view of attractors of chaotic differentia…
Skeleta of affine hypersurfaces
2014
A smooth affine hypersurface Z of complex dimension n is homotopy equivalent to an n-dimensional cell complex. Given a defining polynomial f for Z as well as a regular triangulation of its Newton polytope, we provide a purely combinatorial construction of a compact topological space S as a union of components of real dimension n, and prove that S embeds into Z as a deformation retract. In particular, Z is homotopy equivalent to S.
Tests of Independence Based on Sign and Rank Covariances
2003
In this paper three different concepts of bivariate sign and rank, namely marginal sign and rank, spatial sign and rank and affine equivariant sign and rank, are considered. The aim is to see whether these different sign and rank covariances can be used to construct tests for the hypothesis of independence. In some cases (spatial sign, affine equivariant sign and rank) an additional assumption on the symmetry of marginal distribution is needed. Limiting distributions of test statistics under the null hypothesis as well as under interesting sequences of contiguous alternatives are derived. Asymptotic relative efficiencies with respect to the regular correlation test are calculated and compar…