Search results for "Algebras"
showing 10 items of 281 documents
Polynomial identities on superalgebras and exponential growth
2003
Abstract Let A be a finitely generated superalgebra over a field F of characteristic 0. To the graded polynomial identities of A one associates a numerical sequence {cnsup(A)}n⩾1 called the sequence of graded codimensions of A. In case A satisfies an ordinary polynomial identity, such sequence is exponentially bounded and we capture its exponential growth by proving that for any such algebra lim n→∞ c n sup (A) n exists and is a non-negative integer; we denote such integer by supexp(A) and we give an effective way for computing it. As an application, we construct eight superalgebras Ai, i=1,…,8, characterizing the identities of any finitely generated superalgebra A with supexp(A)>2 in the f…
Characters, bilinear forms and solvable groups
2016
Abstract We prove a number of results about the ordinary and Brauer characters of finite solvable groups in characteristic 2, by defining and using the concept of the extended nucleus of a real irreducible character. In particular we show that the Isaacs canonical lift of a real irreducible Brauer character has Frobenius–Schur indicator +1. We also show that the principal indecomposable module corresponding to a real irreducible Brauer character affords a quadratic geometry if and only if each extended nucleus is a split extension of a nucleus.
Induced and reduced unbounded operator algebras
2012
The induction and reduction precesses of an O*-vector space \({{\mathfrak M}}\) obtained by means of a projection taken, respectively, in \({{\mathfrak M}}\) itself or in its weak bounded commutant \({{\mathfrak M}^\prime_{\rm w}}\) are studied. In the case where \({{\mathfrak M}}\) is a partial GW*-algebra, sufficient conditions are given for the induced and the reduced spaces to be partial GW*-algebras again.
Hom-Lie quadratic and Pinczon Algebras
2017
ABSTRACTPresenting the structure equation of a hom-Lie algebra 𝔤, as the vanishing of the self commutator of a coderivation of some associative comultiplication, we define up to homotopy hom-Lie algebras, which yields the general hom-Lie algebra cohomology with value in a module. If the hom-Lie algebra is quadratic, using the Pinczon bracket on skew symmetric multilinear forms on 𝔤, we express this theory in the space of forms. If the hom-Lie algebra is symmetric, it is possible to associate to each module a quadratic hom-Lie algebra and describe the cohomology with value in the module.
Semigenerated Carnot algebras and applications to sub-Riemannian perimeter
2021
This paper contributes to the study of sets of finite intrinsic perimeter in Carnot groups. Our intent is to characterize in which groups the only sets with constant intrinsic normal are the vertical half-spaces. Our viewpoint is algebraic: such a phenomenon happens if and only if the semigroup generated by each horizontal half-space is a vertical half-space. We call semigenerated those Carnot groups with this property. For Carnot groups of nilpotency step 3 we provide a complete characterization of semigeneration in terms of whether such groups do not have any Engel-type quotients. Engel-type groups, which are introduced here, are the minimal (in terms of quotients) counterexamples. In add…
POLYNOMIAL IDENTITIES ON SUPERALGEBRAS AND ALMOST POLYNOMIAL GROWTH
2001
Let A be a superalgebra over a field of characteristic zero. In this paper we investigate the graded polynomial identities of A through the asymptotic behavior of a numerical sequence called the sequence of graded codimensions of A. Our main result says that such sequence is polynomially bounded if and only if the variety of superalgebras generated by A does not contain a list of five superalgebras consisting of a 2-dimensional algebra, the infinite dimensional Grassmann algebra and the algebra of 2 × 2 upper triangular matrices with trivial and nontrivial gradings. Our main tool is the representation theory of the symmetric group.
On conditional probabilities and their canonical extensions to Boolean algebras of compound conditionals
2023
In this paper we investigate canonical extensions of conditional probabilities to Boolean algebras of conditionals. Before entering into the probabilistic setting, we first prove that the lattice order relation of every Boolean algebra of conditionals can be characterized in terms of the well-known order relation given by Goodman and Nguyen. Then, as an interesting methodological tool, we show that canonical extensions behave well with respect to conditional subalgebras. As a consequence, we prove that a canonical extension and its original conditional probability agree on basic conditionals. Moreover, we verify that the probability of conjunctions and disjunctions of conditionals in a rece…
On Almost Nilpotent Varieties of Linear Algebras
2020
A variety \(\mathcal {V}\) is almost nilpotent if it is not nilpotent but all proper subvarieties are nilpotent. Here we present the results obtained in recent years about almost nilpotent varieties and their classification.
Specht property for some varieties of Jordan algebras of almost polynomial growth
2019
Abstract Let F be a field of characteristic zero. In [25] it was proved that U J 2 , the Jordan algebra of 2 × 2 upper triangular matrices, can be endowed up to isomorphism with either the trivial grading or three distinct non-trivial Z 2 -gradings or by a Z 2 × Z 2 -grading. In this paper we prove that the variety of Jordan algebras generated by U J 2 endowed with any G-grading has the Specht property, i.e., every T G -ideal containing the graded identities of U J 2 is finitely based. Moreover, we prove an analogue result about the ordinary identities of A 1 , a suitable infinitely generated metabelian Jordan algebra defined in [27] .
Fredholm Spectra and Weyl Type Theorems for Drazin Invertible Operators
2016
In this paper we investigate the relationship between some spectra originating from Fredholm theory of a Drazin invertible operator and its Drazin inverse, if this does exist. Moreover, we study the transmission of Weyl type theorems from a Drazin invertible operator R, to its Drazin inverse S.