Search results for "Amor"

showing 10 items of 1531 documents

Phosphorous doping and drawing effects on the Raman spectroscopic properties of O=P bond in silica-based fiber and preform.

2012

International audience; We report an experimental study of the doping and drawing effects on the Raman activities of phosphorus (P)-doped silica-based optical fiber and its related preform. Our data reveal a high sensitivity level in the full width at half maximum value of the 1330 cm−1 (O = P) Raman band to the P-doping level. Its increase with the P doping level does not clash with an increase in the disorder of the O = P surrendering matrix. In addition, we observe that in the central core region of the sample (higher doping level), the drawing process decreases the relative band amplitude. We tentatively suggest that this phenomenon is due to the change in the first derivate of the bond…

(060.2310) Fiber optics; (300.6450) Spectroscopy Raman; (160.2750) Glass and other amorphous materials; (060.2280) Fiber design and fabrication; (060.2290) Fiber materials.inorganic chemicalsMaterials scienceOptical fiberAnalytical chemistryChemical vapor depositionlaw.inventionCondensed Matter::Materials Sciencesymbols.namesakeOpticslawPolarizabilityCondensed Matter::SuperconductivityFiber[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryDopingtechnology industry and agricultureFiber optics Spectroscopy Raman Glass and other amorphous materials Fiber design and fabrication Fiber materialsElectronic Optical and Magnetic MaterialsFull width at half maximumsymbolsbusinessRaman spectroscopyhuman activitiesRaman scattering
researchProduct

Structural characterization and electrochemical hydrogen storage properties of Ti2LxZrxNi (x [ 0, 0.1, 0.2) alloys prepared by mechanical alloying

2013

International audience; Nominal Ti2Ni was synthesized under argon atmosphere at room temperature using a planetary high-energy ball mill. The effect of milling time and Zr substitution for Ti on the microstructure was characterized by XRD, SEM and TEM, and the discharge capacities of Ti2xZrxNi (x 1/4 0, 0.1, 0.2) were examined by electrochemical measurements at galvanostatic conditions. XRD analysis shows that amorphous phase of Ti2Ni can be elaborated by 60 h of milling, whereas Zr substitution hinders amorphization process of the system. The products of ball milling nominal Ti2xZrxNi (x 1/4 0.1, 0.2) were austenitic (Ti, Zr)Ni and partly TiO, despite the fact that the operation was carrie…

010302 applied physicsAusteniteMaterials scienceRenewable Energy Sustainability and the Environment020209 energyMetallurgyEnergy Engineering and Power Technology02 engineering and technologyCondensed Matter PhysicsElectrochemistryMicrostructure01 natural sciences7. Clean energyCharacterization (materials science)Amorphous solidHydrogen storageFuel TechnologyChemical engineering0103 physical sciences0202 electrical engineering electronic engineering information engineering[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsBall millCurrent density
researchProduct

Amorphous ultra-wide bandgap ZnOx thin films deposited at cryogenic temperatures

2020

Crystalline wurtzite zinc oxide (w-ZnO) can be used as a wide band gap semiconductor for light emitting devices and for transparent or high temperature electronics. The use of amorphous zinc oxide (a-ZnO) can be an advantage in these applications. In this paper we report on X-ray amorphous a-ZnOx thin films (~500 nm) deposited at cryogenic temperatures by reactive magnetron sputtering. The substrates were cooled by a nitrogen flow through the copper substrate holder during the deposition. The films were characterized by X-ray diffraction (XRD), Raman, infrared, UV-Vis-NIR spectroscopies, and ellipsometry. The a-ZnOx films on glass and Ti substrates were obtained at the substrate holder temp…

010302 applied physicsCondensed Matter - Materials ScienceMaterials sciencebusiness.industryBand gapGeneral Physics and AstronomyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologySubstrate (electronics)021001 nanoscience & nanotechnology01 natural sciencesAmorphous solidsymbols.namesakeSputteringEllipsometry0103 physical sciencessymbolsOptoelectronicsFourier transform infrared spectroscopyThin film0210 nano-technologybusinessRaman spectroscopy
researchProduct

Atomic Layer Deposition and Properties of Lanthanum Oxide and Lanthanum-Aluminum Oxide Films

2006

Atomic layer deposition (ALD) of lanthanum oxide on glass and silicon substrates was examined using lanthanum silylamide, La[N(SiMe 3 ) 2 ] 3 , and water as precursors in the substrate temperature range of 150-250 °C. The effect of pulse times and precursor evaporation temperature on the growth rate and refractive index was investigated. The films remained amorphous regardless of the deposition conditions. The resulting La 2 O 3 films contained noticeable amounts of hydrogen and silicon and were chemically unstable while stored in ambient air. Lanthanum aluminum oxide films were achieved with stoichiometry close to that of LaAlO 3 at 225°C from La[N(SiMe 3 ) 2 ] 3 , Al(CH 3 ) 3 , and H 2 O.…

010302 applied physicsLanthanideSiliconProcess Chemistry and TechnologyInorganic chemistrychemistry.chemical_element02 engineering and technologySurfaces and InterfacesGeneral ChemistrySubstrate (electronics)021001 nanoscience & nanotechnology01 natural sciencesEvaporation (deposition)Amorphous solidAtomic layer depositionchemistry.chemical_compoundchemistryLanthanum oxide0103 physical sciencesLanthanum0210 nano-technologyChemical Vapor Deposition
researchProduct

Explosive crystallization in amorphous CuTi thin films: a molecular dynamics study

2019

Abstract Molecular dynamic simulation was used to study mechanism of self-propagating waves of explosive crystallization (devitrification) in the CuTi metallic glass. Processes in thin rectangular samples composed of one to two million atoms were simulated and compared with experimental data. It was shown that the nucleation of primary crystalline clusters occurs homogeneously due to spontaneous fluctuations of atomic structure; the clusters not

010302 applied physicsMaterials scienceAmorphous metalExplosive materialNucleation02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsAmorphous solidlaw.inventionMolecular dynamicsDevitrificationChemical physicslaw0103 physical sciencesMaterials ChemistryCeramics and Composites[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Thin filmCrystallization0210 nano-technologyComputingMilieux_MISCELLANEOUSJournal of Non-Crystalline Solids
researchProduct

Flash annealing influence on structural and electrical properties of TiO2/TiO/Ti periodic multilayers

2014

Abstract Multilayered structures with a 40 nm period composed of titanium and two different titanium oxides, TiO and TiO 2 , were accurately produced by DC magnetron sputtering using the reactive gas pulsing process. These multilayers were sputtered onto Al 2 O 3 sapphire to avoid substrate compound diffusion during flash annealing (ranging from 350 °C to 550 °C). Structure and composition of these periodic TiO 2 /TiO/Ti stacks were investigated by X-ray diffraction, X-ray photoemission spectroscopy and transmission electronic microscopy techniques. Two crystalline phases α-Ti and fcc-TiO were identified in the metallic-rich sub-layers whereas the oxygen-rich ones were composed of a mixture…

010302 applied physicsMaterials scienceAnnealing (metallurgy)Metals and Alloyschemistry.chemical_element02 engineering and technologySurfaces and InterfacesSputter deposition021001 nanoscience & nanotechnology01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAmorphous solidCrystallinitychemistryChemical engineeringRutileElectrical resistivity and conductivity0103 physical sciencesMaterials Chemistry[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics0210 nano-technologyHigh-resolution transmission electron microscopyTitanium
researchProduct

Characteristics of industrially manufactured amorphous hydrogenated carbon (a-C:H) depositions on high-density polyethylene

2016

Industrially high-density polyethylene (HDPE) was successively covered by two types of amorphous hydrogenated carbon (a-C:H) films, one more flexible (f-type) and the other more robust (r-type). The films have been grown by radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique with acetylene plasma. The surface morphology of both types has been studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Contact angle measurements and Raman spectroscopy analysis were done to investigate the surface wettability and carbon chemical composition. Both types display similar morphology and grain growth pattern. Contact angle measurements revealed surfa…

010302 applied physicsMaterials scienceChemistry (all)Settore FIS/01 - Fisica Sperimentalechemistry.chemical_elementNanotechnology02 engineering and technologyGeneral ChemistryChemical vapor depositionPolyethylene021001 nanoscience & nanotechnology01 natural sciencesAmorphous solidContact angleGrain growthchemistry.chemical_compoundCarbon filmAmorphous carbonChemical engineeringchemistry0103 physical sciencesGeneral Materials Science0210 nano-technologyCarbon
researchProduct

Wear and corrosion resistant performance of thermal-sprayed Fe-based amorphous coatings: A review

2019

Abstract Thermal sprayed Fe-based amorphous coatings exhibit excellent wear and corrosion resistance, and thus have been widely utilized for enhancing the performance of material surfaces. In this paper, important research progresses achieved in regards to deposition technologies and properties of thermal sprayed Fe-based amorphous coatings are reviewed. In particular, the dependence of wear and corrosion resistance of the coatings on processing parameters, e.g., kinetic energy, particle size, gas flow rate, and heat treatment temperature are summarized. Moreover, the utilization of reinforced phases and alloy elements for enhancing the wear and corrosion resistance of the coatings are pres…

010302 applied physicsMaterials scienceMetallurgyAlloy02 engineering and technologySurfaces and InterfacesGeneral Chemistryengineering.material021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsVolumetric flow rateCorrosionAmorphous solid0103 physical sciencesThermalMaterials ChemistryengineeringDeposition (phase transition)Fe basedParticle size0210 nano-technologySurface and Coatings Technology
researchProduct

Growth of WC–Cr–N and WC–Al–N coatings in a RF-magnetron sputtering process

2013

Tungsten carbide-based coatings have been used in a wide variety of industrial applications such as high speed cutting tools, extrusion dies, drills, aerospace industries, and more. A few reports on ternary and quaternary coatings of WC with other elements indicate good prospects for these material systems. The present study focuses on the formation of quaternary WCeCreN and WCeAleN coatings during the simultaneous reactive RF-magnetron sputtering of tungsten carbide and Al or Cr targets in an argon/nitrogen gas mixture. The resulting coatings, with thicknesses of 3.5 mme8.2 mm, were characterized by using several analytical techniques including X-ray diffraction, SEM/EDS, AFM, and X-ray ph…

010302 applied physicsMaterials scienceMetallurgychemistry.chemical_element02 engineering and technologySputter depositionNitrideTungsten021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesSurfaces Coatings and FilmsAmorphous solidchemistry.chemical_compoundchemistrySputteringTungsten carbide0103 physical sciencesThin film0210 nano-technologyInstrumentationVacuum
researchProduct

Luminescence properties of chlorine molecules in glassy SiO 2 and optical fibre waveguides

2017

The support from Latvian Research Program IMIS 2, project “Photonics and materials for photonics” is acknowledged. K.K. was partially supported by the Collaborative Research Project of Materials and Structures Laboratory, Tokyo Institute of Technology. The publication costs of this article were covered by the Estonian Academy of Sciences and the University of Tartu.

010302 applied physicsMaterials scienceOptical fiberbusiness.industryGeneral Engineeringphotonicschemistry.chemical_elementoptical fibresamorphous SiO202 engineering and technology021001 nanoscience & nanotechnology01 natural scienceslaw.inventionCl2 impuritieschemistrylaw0103 physical sciencesChlorineluminescence:NATURAL SCIENCES:Physics [Research Subject Categories]MoleculeOptoelectronics0210 nano-technologyLuminescencebusinessProceedings of the Estonian Academy of Sciences
researchProduct