Search results for "Amyloid beta-Peptide"
showing 10 items of 131 documents
Cannabinoid receptor 1 deficiency in a mouse model of Alzheimer's disease leads to enhanced cognitive impairment despite of a reduction in amyloid de…
2012
Alzheimer's disease (AD) is characterized by amyloid-beta deposition in amyloid plaques, neurofibrillary tangles, inflammation, neuronal loss, and cognitive deficits. Cannabinoids display neuromodulatory and neuroprotective effects and affect memory acquisition. Here, we studied the impact of cannabinoid receptor type 1 (CB1) deficiency on the development of AD pathology by breeding amyloid precursor protein (APP) Swedish mutant mice (APP23), an AD animal model, with CB1-deficient mice. In addition to the lower body weight of APP23/CB1(-/-) mice, most of these mice died at an age before typical AD-associated changes become apparent. The surviving mice showed a reduced amount of APP and its …
Targeting Alzheimer’s disease with multimodal polypeptide-based nanoconjugates
2021
LRP1-targeted St-Cl–polyglutamate conjugates as multivalent neuroprotective/neurotrophic therapeutics for Alzheimer’s disease.
Biomarkers Related to Synaptic Dysfunction to Discriminate Alzheimer’s Disease from Other Neurological Disorders
2022
Recently, the synaptic proteins neurogranin (Ng) and α-synuclein (α-Syn) have attracted scientific interest as potential biomarkers for synaptic dysfunction in neurodegenerative diseases. In this study, we measured the CSF Ng and α-Syn concentrations in patients affected by AD (n = 69), non-AD neurodegenerative disorders (n-AD = 50) and non-degenerative disorders (n-ND, n = 98). The concentrations of CSF Ng and α-Syn were significantly higher in AD than in n-AD and n-ND. Moreover, the Aβ42/Ng and Aβ42/α-Syn ratios showed statistically significant differences between groups and discriminated AD patients from n-AD patients, better than Ng or α-Syn…
Emerging contributions of formyl peptide receptors to neurodegenerative diseases.
2021
Abstract Inflammation is a central element of many neurodegenerative diseases. Formyl peptide receptors (FPRs) can trigger several receptor-dependent signal transduction pathways that play a key role in neuroinflammation and neurodegeneration. They are chemotactic receptors that help to regulate pro- and anti-inflammatory responses in most mammals. FPRs are primarily expressed in the immune and nervous systems where they interact with a complex pattern of pathogen-derived and host-endogenous molecules. Mounting evidence points towards a contribution of FPRs – via neuropathological ligands such as Amyloid beta, and neuroprotective ligands such as Humanin, Lipoxin A4, and Annexin A1 – to mult…
Genistein effect on cognition in prodromal Alzheimer's disease patients : the GENIAL clinical trial
2022
Background: Delaying the transition from minimal cognitive impairment to Alzheimer’s dementia is a major concern in Alzheimer’s disease (AD) therapeutics. Pathological signs of AD occur years before the onset of clinical dementia. Thus, long-term therapeutic approaches, with safe, minimally invasive, and yet efective substances are recommended. There is a need to develop new drugs to delay Alzheimer’s dementia. We have taken a nutritional supplement approach with genistein, a chemically defned polyphenol that acts by multimodal specifc mechanisms. Our group previously showed that genistein supplementation is efective to treat the double transgenic (APP/PS1) AD animal model. Methods: In this…
Cellular Prion Protein Participates in Amyloid-β Transcytosis across the Blood—Brain Barrier
2012
The blood—brain barrier (BBB) facilitates amyloid-β (Aβ) exchange between the blood and the brain. Here, we found that the cellular prion protein (PrPc), a putative receptor implicated in mediating Aβ neurotoxicity in Alzheimer's disease (AD), participates in Aβ transcytosis across the BBB. Using an in vitro BBB model, [125I]-Aβ1–40 transcytosis was reduced by genetic knockout of PrPc or after addition of a competing PrPc-specific antibody. Furthermore, we provide evidence that PrPc is expressed in endothelial cells and, that monomeric Aβ1–40 binds to PrPc. These observations provide new mechanistic insights into the role of PrPc in AD.
The sea urchin embryo: a model to study Alzheimer's beta amyloid induced toxicity.
2009
Abstract Alzheimer’s disease (AD) is the most common form of dementia. The cause of AD is closely related to the accumulation of amyloid beta peptide in the neuritic plaques. The use of animal model systems represents a good strategy to elucidate the molecular mechanism behind the development of this pathology. Here we use the Paracentrotus lividus embryo to identify molecules and pathways that can be involved in the degenerative process. As a first step, we identified the presence of an antigen related to the human APP, called Pl APP. This antigen, after gastrula stage, is processed producing a polypeptide of about 10 kDa. By immunohistochemistry we localized the Pl APP antigen in some ser…
In vitro fibrillogenesis of the amyloid beta 1-42 peptide: cholesterol potentiation and aspirin inhibition.
2002
Understanding the formation of extracellular amyloid neurofibrillar bundles/senile plaques and their role in the development of Alzheimer's disease is of considerable interest to neuroscientists and clinicians. Major components of the extracellular neurofibrillar bundles are polymerized amyloid beta (Abeta) peptides (1-40), (1-42) and (1-43), derived in vivo from the soluble amyloid precursor protein (sAPP) by proteolytic (beta- and gamma-secretase) cleavage. The Abeta(1-42) peptide is widely considered to be of greatest significance in relation to the pathogenesis of Alzheimer's disease. A well-defined ultrastructural characteristic within Alzheimer dense plaques is the presence of helical…
Cholesterol binding to amyloid-β fibrils: A TEM study
2008
There is increasing interest in the role of brain cholesterol in Alzheimer's disease and the contribution of cholesterol to the formation of amyloid plaques. This paper presents a TEM study showing the binding of soluble approximately 10 nm diameter cholesterol-PEG 600 micelles to amyloid-beta(1-42) (Abeta(1-42)) fibrils formed either in the presence of this cholesterol derivative or to preformed fibrils generated under four different fibrillogenesis conditions. Specimens negatively stained with uranyl acetate revealed that during 24 h fibrillogenesis at 37 degrees C the cholesterol-PEG micelles bound periodically to Abeta(1-42) protofibrils and apparently also formed a thin smooth unbroken…
Detection of Amyloid-β Fibrils Using Track-Etched Nanopores: Effect of Geometry and Crowding
2021
Several neurodegenerative diseases have been linked to proteins or peptides that are prone to aggregate in different brain regions. Aggregation of amyloid-β (Aβ) peptides is recognized as the main cause of Alzheimer's disease (AD) progression, leading to the formation of toxic Aβ oligomers and amyloid fibrils. The molecular mechanism of Aβ aggregation is complex and still not fully understood. Nanopore technology provides a new way to obtain kinetic and morphological aspects of Aβ aggregation at a single-molecule scale without labeling by detecting the electrochemical signal of the peptides when they pass through the hole. Here, we investigate the influence of nanoscale geometry (conical an…