Search results for "Analisi Matematica"
showing 10 items of 811 documents
Multiple solutions for a Dirichlet problem with p-Laplacian and set-valued nonlinearity
2008
AbstractThe existence of a negative solution, of a positive solution, and of a sign-changing solution to a Dirichlet eigenvalue problem with p-Laplacian and multi-valued nonlinearity is investigated via sub- and supersolution methods as well as variational techniques for nonsmooth functions.
Elliptic problems with convection terms in Orlicz spaces
2021
Abstract The existence of a solution to a Dirichlet problem, for a class of nonlinear elliptic equations, with a convection term, is established. The main novelties of the paper stand on general growth conditions on the gradient variable, and on minimal assumptions on Ω. The approach is based on the method of sub and supersolutions. The solution is a zero of an auxiliary pseudomonotone operator build via truncation techniques. We present also some examples in which we highlight the generality of our growth conditions.
Shape optimization for monge-ampére equations via domain derivative
2011
In this note we prove that, if $\Omega$ is a smooth, strictly convex, open set in $R^n$ $(n \ge 2)$ with given measure, the $L^1$ norm of the convex solution to the Dirichlet problem $\det D^2 u=1$ in $\Omega$, $u=0$ on $\partial\Omega$, is minimum whenever $\Omega$ is an ellipsoid.
Nonlinear elliptic equations having a gradient term with natural growth
2006
Abstract In this paper, we study a class of nonlinear elliptic Dirichlet problems whose simplest model example is: (1) { − Δ p u = g ( u ) | ∇ u | p + f , in Ω , u = 0 , on ∂ Ω . Here Ω is a bounded open set in R N ( N ⩾ 2 ), Δ p denotes the so-called p-Laplace operator ( p > 1 ) and g is a continuous real function. Given f ∈ L m ( Ω ) ( m > 1 ), we study under which growth conditions on g problem (1) admits a solution. If m ⩾ N / p , we prove that there exists a solution under assumption (3) (see below), and that it is bounded when m > N p ; while if 1 m N / p and g satisfies the condition (4) below, we prove the existence of an unbounded generalized solution. Note that no smallness condit…
New isoperimetric estimates for solutions to Monge - Ampère equations
2009
Abstract We prove some sharp estimates for solutions to Dirichlet problems relative to Monge–Ampere equations. Among them we show that the eigenvalue of the Dirichlet problem, when computed on convex domains with fixed measure, is maximal on ellipsoids. This result falls in the class of affine isoperimetric inequalities and shows that the eigenvalue of the Monge–Ampere operator behaves just the contrary of the first eigenvalue of the Laplace operator.
The effects of convolution and gradient dependence on a parametric Dirichlet problem
2020
Our objective is to study a new type of Dirichlet boundary value problem consisting of a system of equations with parameters, where the reaction terms depend on both the solution and its gradient (i.e., they are convection terms) and incorporate the effects of convolutions. We present results on existence, uniqueness and dependence of solutions with respect to the parameters involving convolutions.
A sharp estimate of the extinction time for the mean curvature flow
2007
We establish a pointwise comparison result for a nonlinear degenerate elliptic Dirichlet problem using an isoperimetric inequality involving the total mean curvature. In particular this result provides a sharp estimate for the extinction time of a class of compact surfaces, wider than the convex one, moving by mean curvature flow. Finally we present numerical experiments to compare our estimate with those known in literature.
Two positive solutions for a Dirichlet problem with the (p,q)‐Laplacian
2020
The aim of this paper is to prove the existence of two solutions for a nonlinear elliptic problem involving the (p,q) -Laplacian operator. The solutions are obtained by using variational methods and critical points theorems. The positivity of the solutions is shown by applying a generalized version of the strong maximum principle.
Existence of non-zero solutions for a Dirichlet problem driven by (p(x),q(x)-Laplacian
2021
The paper focuses on a Dirichlet problem driven by the (Formula presented.) -Laplacian. The existence of at least two non-zero solutions under suitable conditions on the nonlinear term is established. The approach is based on variational methods.
Symmetrization for singular semilinear elliptic equations
2012
In this paper, we prove some comparison results for the solution to a Dirichlet problem associated with a singular elliptic equation and we study how the summability of such a solution varies depending on the summability of the datum f. © 2012 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag.