Search results for "Analisi Matematica"

showing 10 items of 811 documents

Multiple solutions for a Dirichlet problem with p-Laplacian and set-valued nonlinearity

2008

AbstractThe existence of a negative solution, of a positive solution, and of a sign-changing solution to a Dirichlet eigenvalue problem with p-Laplacian and multi-valued nonlinearity is investigated via sub- and supersolution methods as well as variational techniques for nonsmooth functions.

Dirichlet problemGeneral MathematicsMathematical analysisNull (mathematics)Multiple solutions Dirichlet problem p-Laplacian set-valued nonlinearitySet (abstract data type)symbols.namesakeGeneralized gradientNonlinear systemDirichlet eigenvalueSettore MAT/05 - Analisi MatematicaDirichlet's principlep-LaplaciansymbolsMathematics
researchProduct

Elliptic problems with convection terms in Orlicz spaces

2021

Abstract The existence of a solution to a Dirichlet problem, for a class of nonlinear elliptic equations, with a convection term, is established. The main novelties of the paper stand on general growth conditions on the gradient variable, and on minimal assumptions on Ω. The approach is based on the method of sub and supersolutions. The solution is a zero of an auxiliary pseudomonotone operator build via truncation techniques. We present also some examples in which we highlight the generality of our growth conditions.

Dirichlet problemGradient dependenceClass (set theory)Truncation methodsTruncationApplied Mathematics010102 general mathematicsZero (complex analysis)Orlicz-Sobolev spacesNonlinear elliptic equationsTerm (logic)01 natural sciences010101 applied mathematicsNonlinear systemOperator (computer programming)Subsolution and supersolutionSettore MAT/05 - Analisi MatematicaApplied mathematics0101 mathematicsAnalysisMathematicsVariable (mathematics)Journal of Mathematical Analysis and Applications
researchProduct

Shape optimization for monge-ampére equations via domain derivative

2011

In this note we prove that, if $\Omega$ is a smooth, strictly convex, open set in $R^n$ $(n \ge 2)$ with given measure, the $L^1$ norm of the convex solution to the Dirichlet problem $\det D^2 u=1$ in $\Omega$, $u=0$ on $\partial\Omega$, is minimum whenever $\Omega$ is an ellipsoid.

Dirichlet problemMathematical optimizationPure mathematicsFictitious domain methodDomain derivativeApplied MathematicsOpen setRegular polygonMonge–Ampère equationMonge-Ampère equationSettore MAT/05 - Analisi MatematicaGeneralizations of the derivativeNorm (mathematics)Discrete Mathematics and CombinatoricsAffine isoperimetric inequalitiesConvex functionAnalysisMathematics
researchProduct

Nonlinear elliptic equations having a gradient term with natural growth

2006

Abstract In this paper, we study a class of nonlinear elliptic Dirichlet problems whose simplest model example is: (1) { − Δ p u = g ( u ) | ∇ u | p + f , in Ω , u = 0 , on ∂ Ω . Here Ω is a bounded open set in R N ( N ⩾ 2 ), Δ p denotes the so-called p-Laplace operator ( p > 1 ) and g is a continuous real function. Given f ∈ L m ( Ω ) ( m > 1 ), we study under which growth conditions on g problem (1) admits a solution. If m ⩾ N / p , we prove that there exists a solution under assumption (3) (see below), and that it is bounded when m > N p ; while if 1 m N / p and g satisfies the condition (4) below, we prove the existence of an unbounded generalized solution. Note that no smallness condit…

Dirichlet problemMathematics(all)Pure mathematicsApplied MathematicsGeneral MathematicsWeak solutionNonlinear elliptic operatorsMathematical analysisGradient term; Nonlinear elliptic operators; Unbounded solutionsType (model theory)Elliptic curveElliptic operatorCompact spaceUnbounded solutionsSettore MAT/05 - Analisi MatematicaBounded functionp-LaplacianGradient termMathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

New isoperimetric estimates for solutions to Monge - Ampère equations

2009

Abstract We prove some sharp estimates for solutions to Dirichlet problems relative to Monge–Ampere equations. Among them we show that the eigenvalue of the Dirichlet problem, when computed on convex domains with fixed measure, is maximal on ellipsoids. This result falls in the class of affine isoperimetric inequalities and shows that the eigenvalue of the Monge–Ampere operator behaves just the contrary of the first eigenvalue of the Laplace operator.

Dirichlet problemMonge-Ampère operatoreigenvalue.Mathematics::Complex VariablesApplied MathematicsMathematical analysisMathematics::Analysis of PDEsMonge–Ampère equationMonge-Ampère equationMathematics::Spectral TheoryMeasure (mathematics)Operator (computer programming)Settore MAT/05 - Analisi MatematicaAffine isoperimetric inequaltieRayleigh–Faber–Krahn inequalityAffine isoperimetric inequalitiesIsoperimetric inequalityLaplace operatorMathematical PhysicsAnalysisEigenvalues and eigenvectorsMathematics
researchProduct

The effects of convolution and gradient dependence on a parametric Dirichlet problem

2020

Our objective is to study a new type of Dirichlet boundary value problem consisting of a system of equations with parameters, where the reaction terms depend on both the solution and its gradient (i.e., they are convection terms) and incorporate the effects of convolutions. We present results on existence, uniqueness and dependence of solutions with respect to the parameters involving convolutions.

Dirichlet problemNumerical AnalysisPartial differential equationApplied MathematicsNumerical analysisMathematical analysis(p q) -LaplacianSystem of linear equationsDirichlet distributionConvolutionConvolutionComputational Mathematicssymbols.namesakeSettore MAT/05 - Analisi MatematicasymbolsParametric problemsBoundary value problemUniquenessSystem of elliptic equationsAnalysisMathematicsDirichlet problem
researchProduct

A sharp estimate of the extinction time for the mean curvature flow

2007

We establish a pointwise comparison result for a nonlinear degenerate elliptic Dirichlet problem using an isoperimetric inequality involving the total mean curvature. In particular this result provides a sharp estimate for the extinction time of a class of compact surfaces, wider than the convex one, moving by mean curvature flow. Finally we present numerical experiments to compare our estimate with those known in literature.

Dirichlet problemPointwiseMean curvature flowMean curvatureApplied MathematicsMathematical analysisCurvatureisoperimetric inequalityextinction timeNonlinear systemElliptic curveSettore MAT/05 - Analisi Matematicamean curvature motionIsoperimetric inequalityMathematics
researchProduct

Two positive solutions for a Dirichlet problem with the (p,q)‐Laplacian

2020

The aim of this paper is to prove the existence of two solutions for a nonlinear elliptic problem involving the (p,q) -Laplacian operator. The solutions are obtained by using variational methods and critical points theorems. The positivity of the solutions is shown by applying a generalized version of the strong maximum principle.

Dirichlet problemPure mathematicsmultiple solutionSettore MAT/05 - Analisi MatematicaGeneral Mathematicscritical pointsemilinear elliptic equationLaplace operator(pq)-LaplacianCritical point (mathematics)Dirichlet problemMathematicsMathematische Nachrichten
researchProduct

Existence of non-zero solutions for a Dirichlet problem driven by (p(x),q(x)-Laplacian

2021

The paper focuses on a Dirichlet problem driven by the (Formula presented.) -Laplacian. The existence of at least two non-zero solutions under suitable conditions on the nonlinear term is established. The approach is based on variational methods.

Dirichlet problemPure mathematicsmultiple solutionscritical pointsApplied Mathematics010102 general mathematicsZero (complex analysis)q(x))-LaplacianMathematics::Spectral Theory-Laplacian01 natural sciences(p(x)q(x))-Laplacian critical points multiple solutions Dirichlet problemTerm (time)010101 applied mathematicsNonlinear systemSettore MAT/05 - Analisi Matematica0101 mathematics(p(x)Laplace operatorAnalysisDirichlet problemMathematicsApplicable Analysis
researchProduct

Symmetrization for singular semilinear elliptic equations

2012

In this paper, we prove some comparison results for the solution to a Dirichlet problem associated with a singular elliptic equation and we study how the summability of such a solution varies depending on the summability of the datum f. © 2012 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag.

Dirichlet problemSharp a priori estimatesSemilinear elliptic equationsMathematics::Operator AlgebrasApplied MathematicsMathematical analysisMathematics::Classical Analysis and ODEsMathematics::Analysis of PDEsComparison resultsSymmetrizationGeodetic datumElliptic curveSettore MAT/05 - Analisi MatematicaMathematics::K-Theory and HomologySymmetrizationMathematics
researchProduct