6533b829fe1ef96bd128a5ec

RESEARCH PRODUCT

The effects of convolution and gradient dependence on a parametric Dirichlet problem

Francesca VetroCalogero VetroDumitru MotreanuDumitru Motreanu

subject

Dirichlet problemNumerical AnalysisPartial differential equationApplied MathematicsNumerical analysisMathematical analysis(p q) -LaplacianSystem of linear equationsDirichlet distributionConvolutionConvolutionComputational Mathematicssymbols.namesakeSettore MAT/05 - Analisi MatematicasymbolsParametric problemsBoundary value problemUniquenessSystem of elliptic equationsAnalysisMathematicsDirichlet problem

description

Our objective is to study a new type of Dirichlet boundary value problem consisting of a system of equations with parameters, where the reaction terms depend on both the solution and its gradient (i.e., they are convection terms) and incorporate the effects of convolutions. We present results on existence, uniqueness and dependence of solutions with respect to the parameters involving convolutions.

10.1007/s42985-019-0004-yhttp://hdl.handle.net/10447/545894