0000000000281232

AUTHOR

Dumitru Motreanu

showing 13 related works from this author

Systems of quasilinear elliptic equations with dependence on the gradient via subsolution-supersolution method

2017

For the homogeneous Dirichlet problem involving a system of equations driven by \begin{document}$(p,q)$\end{document} -Laplacian operators and general gradient dependence we prove the existence of solutions in the ordered rectangle determined by a subsolution-supersolution. This extends the preceding results based on the method of subsolution-supersolution for systems of elliptic equations. Positive and negative solutions are obtained.

System of elliptic equationDirichlet problemApplied Mathematics010102 general mathematicsMathematical analysisMathematics::Analysis of PDEsSystem of linear equations01 natural sciences(pq)-Laplacian010101 applied mathematicsSubsolution-supersolution and gradient dependenceSettore MAT/05 - Analisi MatematicaHomogeneousDiscrete Mathematics and CombinatoricsRectangle0101 mathematicsLaplace operatorAnalysisDirichlet problemMathematicsDiscrete & Continuous Dynamical Systems - S
researchProduct

A Parametric Dirichlet Problem for Systems of Quasilinear Elliptic Equations With Gradient Dependence

2016

The aim of this article is to study the Dirichlet boundary value problem for systems of equations involving the (pi, qi) -Laplacian operators and parameters μi≥0 (i = 1,2) in the principal part. Another main point is that the nonlinearities in the reaction terms are allowed to depend on both the solution and its gradient. We prove results ensuring existence, uniqueness, and asymptotic behavior with respect to the parameters.

Control and Optimization01 natural sciencesElliptic boundary value problemsymbols.namesakeDirichlet eigenvalueSettore MAT/05 - Analisi MatematicaDirichlet's principleBoundary value problemparametric problem0101 mathematicssystem of elliptic equationsMathematicsDirichlet problemDirichlet problem010102 general mathematicsMathematical analysisDirichlet's energyMathematics::Spectral Theory(pq)-LaplacianComputer Science Applications010101 applied mathematicsGeneralized Dirichlet distributionDirichlet boundary conditionSignal ProcessingsymbolsAnalysis
researchProduct

Location of solutions for quasi-linear elliptic equations with general gradient dependence

2017

Existence and location of solutions to a Dirichlet problem driven by $(p,q)$-Laplacian and containing a (convection) term fully depending on the solution and its gradient are established through the method of subsolution-supersolution. Here we substantially improve the growth condition used in preceding works. The abstract theorem is applied to get a new result for existence of positive solutions with a priori estimates.

subsolution-supersolutionGradient dependenceApplied Mathematics010102 general mathematicsMathematical analysisMathematics::Analysis of PDEs$(pQuasi-linear elliptic equationq)$-laplacian01 natural sciences010101 applied mathematics(p q)-laplacian; Gradient dependence; positive solution; Quasi-linear elliptic equations; subsolution-supersolution; Applied Mathematicspositive solutionSettore MAT/05 - Analisi MatematicaQA1-939Quasi linear0101 mathematicsquasi-linear elliptic equationsMathematics(p q)-laplacianMathematics
researchProduct

The effects of convolution and gradient dependence on a parametric Dirichlet problem

2020

Our objective is to study a new type of Dirichlet boundary value problem consisting of a system of equations with parameters, where the reaction terms depend on both the solution and its gradient (i.e., they are convection terms) and incorporate the effects of convolutions. We present results on existence, uniqueness and dependence of solutions with respect to the parameters involving convolutions.

Dirichlet problemNumerical AnalysisPartial differential equationApplied MathematicsNumerical analysisMathematical analysis(p q) -LaplacianSystem of linear equationsDirichlet distributionConvolutionConvolutionComputational Mathematicssymbols.namesakeSettore MAT/05 - Analisi MatematicasymbolsParametric problemsBoundary value problemUniquenessSystem of elliptic equationsAnalysisMathematicsDirichlet problem
researchProduct

A sub-supersolution approach for Neumann boundary value problems with gradient dependence

2020

Abstract Existence and location of solutions to a Neumann problem driven by an nonhomogeneous differential operator and with gradient dependence are established developing a non-variational approach based on an adequate method of sub-supersolution. The abstract theorem is applied to prove the existence of finitely many positive solutions or even infinitely many positive solutions for a class of Neumann problems.

Gradient dependenceClass (set theory)Applied Mathematics010102 general mathematicsGeneral EngineeringNeumann problemGeneral MedicineDifferential operator01 natural sciencesPositive solution010101 applied mathematicsComputational MathematicsQuasilinear elliptic equationSettore MAT/05 - Analisi MatematicaNeumann boundary conditionMathematics::Metric GeometryApplied mathematicsBoundary value problem0101 mathematicsSub-supersolutionGeneral Economics Econometrics and FinanceAnalysisMathematicsNonlinear Analysis: Real World Applications
researchProduct

Quasilinear Dirichlet Problems with Degenerated p-Laplacian and Convection Term

2021

The paper develops a sub-supersolution approach for quasilinear elliptic equations driven by degenerated p-Laplacian and containing a convection term. The presence of the degenerated operator forces a substantial change to the functional setting of previous works. The existence and location of solutions through a sub-supersolution is established. The abstract result is applied to find nontrivial, nonnegative and bounded solutions.

Convectionsub-supersolutionGeneral MathematicsOperator (physics)quasilinear elliptic problemlcsh:MathematicsMathematical analysisMathematics::Analysis of PDEsnonnegative solutionlcsh:QA1-939Dirichlet distributionTerm (time)symbols.namesakedegenereted p-LaplacianSettore MAT/05 - Analisi MatematicaBounded functionComputer Science (miscellaneous)p-Laplaciansymbolsconvection termEngineering (miscellaneous)MathematicsMathematics
researchProduct

Existence and asymptotic properties for quasilinear elliptic equations with gradient dependence

2016

Abstract The paper focuses on a Dirichlet problem driven by the ( p , q ) -Laplacian containing a parameter μ > 0 in the principal part of the elliptic equation and a (convection) term fully depending on the solution and its gradient. Existence of solutions, uniqueness, a priori estimates, and asymptotic properties as μ → 0 and μ → ∞ are established under suitable conditions.

Dirichlet problemConvectionApplied Mathematics010102 general mathematicsMathematical analysis01 natural sciences(pq)-LaplacianTerm (time)010101 applied mathematicsElliptic curveQuasilinear elliptic equationSettore MAT/05 - Analisi Matematicagradient dependenceasymptotic propertiesPrincipal partA priori and a posterioriUniqueness0101 mathematicsLaplace operatorMathematics
researchProduct

Variational differential inclusions without ellipticity condition

2020

The paper sets forth a new type of variational problem without any ellipticity or monotonicity condition. A prototype is a differential inclusion whose driving operator is the competing weighted $(p,q)$-Laplacian $-\Delta_p u+\mu\Delta_q u$ with $\mu\in \mathbb{R}$. Local and nonlocal boundary value problems fitting into this nonstandard setting are examined.

Competing (PQ)-LaplacianApplied Mathematics010102 general mathematicsMathematical analysishemivariational inequalitylocal and nonlocal operatorsq)$-laplacian01 natural sciencesvariational problem010101 applied mathematicsDifferential inclusionSettore MAT/05 - Analisi MatematicaQA1-939lack of ellipticity0101 mathematicsMathematicsMathematicscompeting $(pElectronic Journal of Qualitative Theory of Differential Equations
researchProduct

Critical points for nondifferentiable functions in presence of splitting

2006

A classical critical point theorem in presence of splitting established by Brézis-Nirenberg is extended to functionals which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function. The obtained result is then exploited to prove a multiplicity theorem for a family of elliptic variational-hemivariational eigenvalue problems. © 2005 Elsevier Inc. All rights reserved.

Mathematics::Functional AnalysisPure mathematicsnon-smooth functionNonsmooth functionssplittingApplied MathematicsMathematical analysisMultiple solutionsMultiple solutionMathematics::Analysis of PDEsRegular polygoncritical point; non-smooth function; splittingcritical pointMultiplicity (mathematics)Critical pointsNonsmooth functionElliptic variational-hemivariational eigenvalue problemLipschitz continuityCritical point (mathematics)Elliptic variational–hemivariational eigenvalue problemsSplittingsEigenvalues and eigenvectorsAnalysisMathematics
researchProduct

2-SYMMETRIC CRITICAL POINT THEOREMS FOR NON-DIFFERENTIABLE FUNCTIONS

2008

AbstractIn this paper, some min–max theorems for even andC1functionals established by Ghoussoub are extended to the case of functionals that are the sum of a locally Lipschitz continuous, even term and a convex, proper, lower semi-continuous, even function. A class of non-smooth functionals admitting an unbounded sequence of critical values is also pointed out.

Discrete mathematicsNon-smooth critical point theory minmax theorems symmetric functionsGeneral MathematicsRegular polygonEven and odd functionsDifferentiable functionLipschitz continuityCritical point (mathematics)MathematicsGlasgow Mathematical Journal
researchProduct

Bounded Palais–Smale sequences for non-differentiable functions

2011

The existence of bounded Palais-Smale sequences (briefly BPS) for functionals depending on a parameter belonging to a real interval and which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function, is obtained when the parameter runs in a full measure subset of the given interval. Specifically, for this class of non-smooth functions, we obtain BPS related to mountain pass and to global infima levels. This is done by developing a unifying approach, which applies to both cases and relies on a suitable deformation lemma. © 2011 Elsevier Ltd. All rights reserved.

Lemma (mathematics)Pure mathematicsApplied MathematicsMathematical analysisNon-smooth functionsFunction (mathematics)Lipschitz continuityMeasure (mathematics)Infimum and supremumDeformationCritical pointBounded Palais-Smale sequenceBounded functionMountain pass geometryDifferentiable functionConvex functionAnalysisMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

Multiple solutions for a Dirichlet problem with p-Laplacian and set-valued nonlinearity

2008

AbstractThe existence of a negative solution, of a positive solution, and of a sign-changing solution to a Dirichlet eigenvalue problem with p-Laplacian and multi-valued nonlinearity is investigated via sub- and supersolution methods as well as variational techniques for nonsmooth functions.

Dirichlet problemGeneral MathematicsMathematical analysisNull (mathematics)Multiple solutions Dirichlet problem p-Laplacian set-valued nonlinearitySet (abstract data type)symbols.namesakeGeneralized gradientNonlinear systemDirichlet eigenvalueSettore MAT/05 - Analisi MatematicaDirichlet's principlep-LaplaciansymbolsMathematics
researchProduct

A Sub-Supersolution Approach for Robin Boundary Value Problems with Full Gradient Dependence

2020

The paper investigates a nonlinear elliptic problem with a Robin boundary condition, which exhibits a convection term with full dependence on the solution and its gradient. A sub- supersolution approach is developed for this type of problems. The main result establishes the existence of a solution enclosed in the ordered interval formed by a sub-supersolution. The result is applied to find positive solutions.

sub-supersolutionConvectionlcsh:MathematicsGeneral Mathematics010102 general mathematicsMathematics::Analysis of PDEsInterval (mathematics)Robin boundary conditionType (model theory)lcsh:QA1-93901 natural sciencesRobin boundary conditionTerm (time)010101 applied mathematicsNonlinear systemnonlinear elliptic problemSettore MAT/05 - Analisi Matematicapositive solutiongradient dependenceComputer Science (miscellaneous)Applied mathematicsBoundary value problem0101 mathematicsEngineering (miscellaneous)MathematicsMathematics
researchProduct