6533b7d7fe1ef96bd1268408

RESEARCH PRODUCT

A Parametric Dirichlet Problem for Systems of Quasilinear Elliptic Equations With Gradient Dependence

Francesca VetroCalogero VetroDumitru Motreanu

subject

Control and Optimization01 natural sciencesElliptic boundary value problemsymbols.namesakeDirichlet eigenvalueSettore MAT/05 - Analisi MatematicaDirichlet's principleBoundary value problemparametric problem0101 mathematicssystem of elliptic equationsMathematicsDirichlet problemDirichlet problem010102 general mathematicsMathematical analysisDirichlet's energyMathematics::Spectral Theory(pq)-LaplacianComputer Science Applications010101 applied mathematicsGeneralized Dirichlet distributionDirichlet boundary conditionSignal ProcessingsymbolsAnalysis

description

The aim of this article is to study the Dirichlet boundary value problem for systems of equations involving the (pi, qi) -Laplacian operators and parameters μi≥0 (i = 1,2) in the principal part. Another main point is that the nonlinearities in the reaction terms are allowed to depend on both the solution and its gradient. We prove results ensuring existence, uniqueness, and asymptotic behavior with respect to the parameters.

10.1080/01630563.2016.1219866http://hdl.handle.net/10447/218926