6533b7d6fe1ef96bd12665b8

RESEARCH PRODUCT

Systems of quasilinear elliptic equations with dependence on the gradient via subsolution-supersolution method

Dumitru MotreanuCalogero VetroFrancesca Vetro

subject

System of elliptic equationDirichlet problemApplied Mathematics010102 general mathematicsMathematical analysisMathematics::Analysis of PDEsSystem of linear equations01 natural sciences(pq)-Laplacian010101 applied mathematicsSubsolution-supersolution and gradient dependenceSettore MAT/05 - Analisi MatematicaHomogeneousDiscrete Mathematics and CombinatoricsRectangle0101 mathematicsLaplace operatorAnalysisDirichlet problemMathematics

description

For the homogeneous Dirichlet problem involving a system of equations driven by \begin{document}$(p,q)$\end{document} -Laplacian operators and general gradient dependence we prove the existence of solutions in the ordered rectangle determined by a subsolution-supersolution. This extends the preceding results based on the method of subsolution-supersolution for systems of elliptic equations. Positive and negative solutions are obtained.

https://doi.org/10.3934/dcdss.2018017