6533b85efe1ef96bd12bf2eb
RESEARCH PRODUCT
Critical points for nondifferentiable functions in presence of splitting
Roberto LivreaSalvatore A. MaranoDumitru Motreanusubject
Mathematics::Functional AnalysisPure mathematicsnon-smooth functionNonsmooth functionssplittingApplied MathematicsMathematical analysisMultiple solutionsMultiple solutionMathematics::Analysis of PDEsRegular polygoncritical point; non-smooth function; splittingcritical pointMultiplicity (mathematics)Critical pointsNonsmooth functionElliptic variational-hemivariational eigenvalue problemLipschitz continuityCritical point (mathematics)Elliptic variational–hemivariational eigenvalue problemsSplittingsEigenvalues and eigenvectorsAnalysisMathematicsdescription
A classical critical point theorem in presence of splitting established by Brézis-Nirenberg is extended to functionals which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function. The obtained result is then exploited to prove a multiplicity theorem for a family of elliptic variational-hemivariational eigenvalue problems. © 2005 Elsevier Inc. All rights reserved.
year | journal | country | edition | language |
---|---|---|---|---|
2006-07-01 |