Search results for "Analisi Matematica"
showing 10 items of 811 documents
Con la matematica si può anche giocare
2016
Giochi matematici
Spectral analysis of the Neumann-Poincaré operator and characterization of the stress concentration in anti-plane elasticity
2012
When holes or hard elastic inclusions are closely located, stress which is the gradient of the solution to the anti-plane elasticity equation can be arbitrarily large as the distance between two inclusions tends to zero. It is important to precisely characterize the blow-up of the gradient of such an equation. In this paper we show that the blow-up of the gradient can be characterized by a singular function defined by the single layer potential of an eigenfunction corresponding to the eigenvalue 1/2 of a Neumann–Poincare type operator defined on the boundaries of the inclusions. By comparing the singular function with the one corresponding to two disks osculating to the inclusions, we quant…
A sub-supersolution approach for Neumann boundary value problems with gradient dependence
2020
Abstract Existence and location of solutions to a Neumann problem driven by an nonhomogeneous differential operator and with gradient dependence are established developing a non-variational approach based on an adequate method of sub-supersolution. The abstract theorem is applied to prove the existence of finitely many positive solutions or even infinitely many positive solutions for a class of Neumann problems.
An Integral on a Complete Metric Measure Space
2015
We study a Henstock-Kurzweil type integral defined on a complete metric measure space \(X\) endowed with a Radon measure \(\mu\) and with a family of “cells” \(\mathcal{F}\) that satisfies the Vitali covering theorem with respect to \(\mu\). This integral encloses, in particular, the classical Henstock-Kurzweil integral on the real line, the dyadic Henstock-Kurzweil integral, the Mawhin’s integral [19], and the \(s\)-HK integral [4]. The main result of this paper is the extension of the usual descriptive characterizations of the Henstock-Kurzweil integral on the real line, in terms of \(ACG^*\) functions (Main Theorem 1) and in terms of variational measures (Main Theorem 2).
MR3106093 Reviewed Łochowski, Rafał M. On a generalisation of the Hahn-Jordan decomposition for real càdlàg functions. Colloq. Math. 132 (2013), no. …
2013
Exact and approximate analytical solutions for nonlocal nanoplates of arbitrary shapes in bending using the line element-less method
2021
AbstractIn this study, an innovative procedure is presented for the analysis of the static behavior of plates at the micro and nano scale, with arbitrary shape and various boundary conditions. In this regard, the well-known Eringen’s nonlocal elasticity theory is used to appropriately model small length scale effects. The proposed mesh-free procedure, namely the Line Element-Less Method (LEM), only requires the evaluation of simple line integrals along the plate boundary parametric equation. Further, variations of appropriately introduced functionals eventually lead to a linear system of algebraic equations in terms of the expansion coefficients of the deflection function. Notably, the prop…
Comments on the paper "COINCIDENCE THEOREMS FOR SOME MULTIVALUED MAPPINGS" by B. E. RHOADES, S. L. SINGH AND CHITRA KULSHRESTHA
2011
The aim of this note is to point out an error in the proof of Theorem 1 in the paper entitled “Coincidence theorems for some multivalued mappings” by B. E. Rhoades, S. L. Singh and Chitra Kulshrestha [Internat. J. Math. & Math. Sci., 7 (1984), 429-434], and to indicate a way to repair it.
MR2886259 Naralenkov, Kirill Several comments on the Henstock-Kurzweil and McShane integrals of vector-valued functions. Czechoslovak Math. J. 61(136…
2012
In this paper the author essentially discusses the difference between the Henstock-Kurzweil and McShane integrals of vector-valued functions from the descriptive point of view. He first considers three notions of absolute continuity for vector-valued functions AC, AC*, AC_{\delta}) and studies the relationships between the corresponding classes of functions. Then he uses such notions to give descriptive characterizations of the Henstock-Kurzweil and McShane integrable functions.
An optimal Poincaré-Wirtinger inequality in Gauss space
2013
International audience; Let $\Omega$ be a smooth, convex, unbounded domain of $\mathbb{R}^N$. Denote by $\mu_1(\Omega)$ the first nontrivial Neumann eigenvalue of the Hermite operator in $\Omega$; we prove that $\mu_1(\Omega) \ge 1$. The result is sharp since equality sign is achieved when $\Omega$ is a $N$-dimensional strip. Our estimate can be equivalently viewed as an optimal Poincaré-Wirtinger inequality for functions belonging to the weighted Sobolev space $H^1(\Omega,d\gamma_N)$, where $\gamma_N$ is the $N$% -dimensional Gaussian measure.
A sharp lower bound for some neumann eigenvalues of the hermite operator
2013
This paper deals with the Neumann eigenvalue problem for the Hermite operator defined in a convex, possibly unbounded, planar domain $\Omega$, having one axis of symmetry passing through the origin. We prove a sharp lower bound for the first eigenvalue $\mu_1^{odd}(\Omega)$ with an associated eigenfunction odd with respect to the axis of symmetry. Such an estimate involves the first eigenvalue of the corresponding one-dimensional problem. As an immediate consequence, in the class of domains for which $\mu_1(\Omega)=\mu_1^{odd}(\Omega)$, we get an explicit lower bound for the difference between $\mu(\Omega)$ and the first Neumann eigenvalue of any strip.