Search results for "Analisi Matematica"
showing 10 items of 811 documents
Wulff shape characterizations in overdetermined anisotropic elliptic problems
2017
We study some overdetermined problems for possibly anisotropic degenerate elliptic PDEs, including the well-known Serrin's overdetermined problem, and we prove the corresponding Wulff shape characterizations by using some integral identities and just one pointwise inequality. Our techniques provide a somehow unified approach to this variety of problems.
Best approximation and variational inequality problems involving a simulation function
2016
We prove the existence of a g-best proximity point for a pair of mappings, by using suitable hypotheses on a metric space. Moreover, we establish some convergence results for a variational inequality problem, by using the variational characterization of metric projections in a real Hilbert space. Our results are applicable to classical problems of optimization theory.
On the existence and multiplicity of solutions for Dirichlet's problem for fractional differential equations
2016
In this paper, by using variational methods and critical point theorems, we prove the existence and multiplicity of solutions for boundary value problem for fractional order differential equations where Riemann-Liouville fractional derivatives and Caputo fractional derivatives are used. Our results extend the second order boundary value problem to the non integer case. Moreover, some conditions to determinate nonnegative solutions are presented and examples are given to illustrate our results.
Fixed point theorems for multivalued maps via new auxiliary function
2016
We introduce a contractive condition involving new auxiliary function and prove a fixed point theorem for closed multivalued maps on complete metric spaces. An example and an application to integral equation are given in support of our findings.
Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations
2012
In this paper, we establish certain fixed point theorems in metric spaces with a partial ordering. Presented theorems extend and generalize several existing results in the literature. As application, we use the fixed point theorems obtained in this paper to study existence and uniqueness of solutions for fourth-order two-point boundary value problems for elastic beam equations.
On the stability of the Serrin problem
2008
We investigate stability issues concerning the radial symmetry of solutions to Serrin's overdetermined problems. In particular, we show that, if $u$ is a solution to $\Delta u=n$ in a smooth domain $\Omega \subset \rn$, $u=0$ on $\partial\Omega$ and $|Du|$ is close to 1 on $\partial\Omega$, then $\Omega$ is close to the union of a certain number of disjoint unitary balls.
Local behaviour of singular solutions for nonlinear elliptic equations in divergence form
2012
We consider the following class of nonlinear elliptic equations $$\begin{array}{ll}{-}{\rm div}(\mathcal{A}(|x|)\nabla u) +u^q=0\quad {\rm in}\; B_1(0)\setminus\{0\}, \end{array}$$ where q > 1 and $${\mathcal{A}}$$ is a positive C 1(0,1] function which is regularly varying at zero with index $${\vartheta}$$ in (2−N,2). We prove that all isolated singularities at zero for the positive solutions are removable if and only if $${\Phi\not\in L^q(B_1(0))}$$ , where $${\Phi}$$ denotes the fundamental solution of $${-{\rm div}(\mathcal{A}(|x|)\nabla u)=\delta_0}$$ in $${\mathcal D'(B_1(0))}$$ and δ0 is the Dirac mass at 0. Moreover, we give a complete classification of the behaviour near zero of al…
A Dirichlet problem for the Laplace operator in a domain with a small hole close to the boundary
2016
We study the Dirichlet problem in a domain with a small hole close to the boundary. To do so, for each pair $\boldsymbol\varepsilon = (\varepsilon_1, \varepsilon_2 )$ of positive parameters, we consider a perforated domain $\Omega_{\boldsymbol\varepsilon}$ obtained by making a small hole of size $\varepsilon_1 \varepsilon_2 $ in an open regular subset $\Omega$ of $\mathbb{R}^n$ at distance $\varepsilon_1$ from the boundary $\partial\Omega$. As $\varepsilon_1 \to 0$, the perforation shrinks to a point and, at the same time, approaches the boundary. When $\boldsymbol\varepsilon \to (0,0)$, the size of the hole shrinks at a faster rate than its approach to the boundary. We denote by $u_{\bolds…
Parametric and nonparametric A-Laplace problems: Existence of solutions and asymptotic analysis
2021
We give sufficient conditions for the existence of weak solutions to quasilinear elliptic Dirichlet problem driven by the A-Laplace operator in a bounded domain Ω. The techniques, based on a variant of the symmetric mountain pass theorem, exploit variational methods. We also provide information about the asymptotic behavior of the solutions as a suitable parameter goes to 0 + . In this case, we point out the existence of a blow-up phenomenon. The analysis developed in this paper extends and complements various qualitative and asymptotic properties for some cases described by homogeneous differential operators.
Solution of an initial-value problem for parabolic equations via monotone operator methods
2014
We study a general initial-value problem for parabolic equations in Banach spaces, by using a monotone operator method. We provide sufficient conditions for the existence of solution to such problem.