Search results for "Analysi"
showing 10 items of 27203 documents
Adaptive Finite Temperature String Method in Collective Variables.
2017
Here we present a modified version of the on-the-fly string method for the localization of the minimum free energy path in a space of arbitrary collective variables. In the proposed approach the shape of the biasing potential is controlled by only two force constants, defining the width of the potential along the string and orthogonal to it. The force constants and the distribution of the string nodes are optimized during the simulation, improving the convergence. The optimized parameters can be used for umbrella sampling with a path CV along the converged string as the reaction coordinate. We test the new method with three fundamentally different processes: chloride attack to chloromethane…
Smoothed Spherical Truncation based on Fuzzy Membership Functions: Application to the Molecular Encoding.
2019
A novel spherical truncation method, based on fuzzy membership functions, is introduced to truncate interatomic (or interaminoacid) relations according to smoothing values computed from fuzzy membership degrees. In this method, the molecules are circumscribed into a sphere, so that the geometric centers of the molecules are the centers of the spheres. The fuzzy membership degree of each atom (or aminoacid) is computed from its distance with respect to the geometric center of the molecule, by using a fuzzy membership function. So, the smoothing value to be applied in the truncation of a relation (or interaction) is computed by averaging the fuzzy membership degrees of the atoms (or aminoacid…
Theoretical Investigation of the Low-Energy States of CpMoCl(PMe 3 ) 2 and Their Role in the Spin-Forbidden Addition of N 2 and CO
2003
International audience; A recent computational investigation of Jahn−Teller effects in unsaturated 16-electron d4d6 [CpMLn] complexes (Abu-Hasanayn, F.; Cheong, P.; Oliff, M. Angew. Chem.2002, 41, 2120) highlighted the typical presence of two spin-triplet and two singlet states of competing stability in these complexes and pointed out the necessity to account for more than one electronic state in studies thereof. Consequently, we have reinvestigated the addition of N2 to all the four low-energy states of CpMoCl(PH3)2, a reaction for which previously only one singlet and one triplet state have been considered (Keogh, D. W.; Poli, R. J. Am. Chem. Soc.1997, 119, 2516). The present study was pe…
Systematic Investigation of Resorcin[4]arene-Based Cavitands as Affinity Materials on Quartz Crystal Microbalances.
2017
Resorcin[4]arene cavitands are well-known supramolecular hosts, and their outstanding guest-binding abilities in solution have been studied in detail in recent decades. In a systematic approach, different resorcin[4]arene cavitands and container molecules are characterized as affinity materials for gravimetric sensing using high-fundamental-frequency quartz crystal microbalances. Analysis of their affinity toward a series of various analytes reveals a remarkable dependence of both selectivity and sensitivity on the shape, accessibility, and size of the cavity, along with their supramolecular interactions with the host molecules.
A family of heterotetrameric clusters of chloride species and halomethanes held by two halogen and two hydrogen bonds
2016
Two previously reported 1,3,5,7,9-pentaazanona-1,3,6,8-tetraenate (PANT) chloride platinum(II) complexes [PtCl{HNC(R)NCN[C(Ph)C(Ph)]CNC(R)NH}] (R = tBu 1, Ph 2) form solvates with halomethanes 1·1¼CH2Cl2, 1·1⅖CH2Br2, and 2·CHCl3. All these species feature novel complex-solvent heterotetrameric clusters, where the structural units are linked simultaneously by two C–X⋯Cl–Pt (X = Cl, Br) halogen and two C–H⋯Cl–Pt hydrogen bonds. The geometric parameters of these weak interactions were determined using single-crystal XRD, and the natures of the XBs and HBs in the clusters were studied for the isolated model systems (1)2·(CH2Cl2)2, (1)2·(CH2Br2)2, and (2)2·(CHCl3)2 using DFT calculations and Bad…
Energetic study of bifurcated hydrogen bonds in secondary structures of salts composed with dicarboxylic acids and ethylamine
2020
Abstract The nature of bifurcated hydrogen bonds prompted us to analyze the energy of supramolecular motifs on the example of new structures of carboxylic acids salts with amines, which guarantee a multitude of such interactions. Experimental and theoretical studies of four dicarboxylic salts with primary amine: ethylammonium succinate hydrate (1), tartrate hydrate (2) phthalate hydrate (3) and terephthalate (4) has been investigated along with study of the strength of interactions between the anions and cations. The complete topological analysis of the charge density for all new structures allowed designation of the estimated Cumulative Dissociation Energy (eCDE).
Magnetostructural correlations in CuII−NC−WV linkage: the case of [CuII(diimine)]2+−[WV(CN)8]3− 0D assemblies
2009
International audience; We report on the syntheses, crystal structures, and magnetic properties of two cyano-bridged molecular assemblies: [CuII(phen)3]2{[CuII(phen)2]2[WV(CN)8]2}(ClO4)2·10H2O (phen = 1,10-phenanthroline) (1) and {[CuII(bpy)2]2[WV(CN)8]} {[CuII(bpy)2][WV(CN)8]}·4H2O (bpy = 2,2′-bipyridyl) (2). Compound 1 consists of cyano-bridged [CuII2WV2]2− molecular rectangles and isolated [CuII(phen)3]2+ complexes. The molecular structure of 2 reveals cyano-bridged trinuclear [CuII2WV]+ and dinuclear [CuIIWV]− ions. Magnetic interactions in 1 are interpreted in terms of the model of a tetranuclear moiety consisting of two ferromagnetic CuII−NC−WV units (J1 = +39(4) cm−1) interacting ant…
Synthesis and in vitro biological evaluation of novel diaminothiophene scaffolds as antitumor and anti-influenza virus agents. Part 2
2017
On the basis of high-throughput screening, fragment-based drug discovery, structure–activity relationships and building block analysis methods, herein we report the synthesis and biological evaluation of a novel series of diethyl 2,5-diaminothiophene-3,4-dicarboxylate derivatives. All of the prepared Schiff bases (with mono-, di- and poly-substituents at the aromatic portion), mono- and bis-amides of diethyl 2,5-diaminothiophene-3,4-dicarboxylate, were evaluated against various human cancer and non-cancerous (only for active compounds) cell lines, as well as influenza A (subtypes FM/1/47/H1N1, hanfang/359/95/H3N2) and B (subtype jifang/13/97) viruses. The obtained results suggest that some …
Application of Rigidity-Controlled Supramolecular Affinity Materials for the Gravimetric Detection of Hazardous and Illicit Compounds.
2016
The combination of an (-)-isosteviol-derived building block and 9,9'-spirobifluorene or tetraphenylmethane generated highly potent new affinity materials for the detection of volatile organic compounds (VOCs). Comparison of their affinity behaviour with different core structures showed remarkable influence on selectivity and sensitivity due to structural rigidity and their pre-organization. Their unique supramolecular properties were investigated in an affinity assay using high fundamental frequency quartz crystal microbalances.
Diabetes and renin-angiotensin-aldosterone system: Implications for covid-19 patients with diabetes treatment management
2020
In the context of the COVID-19 continuous spreading, this paper focuses on the increased risk of diabetic patients regarding the metabolic control and the uncertainties related to SARS-CoV-2 infection. Chronic hyperglycaemia negatively affects the immune system, which triggers an increase of morbidity and mortality for viral infections. A key aspect of COVID-19 resides in the involvement of renin-angiotensin-aldosterone (RAAS) system that causes a cascade of reactions mediated by vasoactive peptides with implications in vasoconstriction, vascular permeability, oxidative stress remodelling and tissue injuries. Activation of RAAS at pulmonary level, is responsible for the local damage. Many q…