Search results for "Anharmonic"
showing 10 items of 118 documents
The empirical equilibrium structure of diacetylene
2008
High-level quantum-chemical calculations are reported at the MP2 and CCSD(T) levels of theory for the equilibrium structure and the harmonic and anharmonic force fields of diacetylene, HCCCCH. The calculations were performed employing Dunning's hierarchy of correlation-consistent basis sets cc-pVXZ, cc-pCVXZ, and cc-pwCVXZ, as well as the ANO2 basis set of Almloef and Taylor. An empirical equilibrium structure based on experimental rotational constants for thirteen isotopic species of diacetylene and computed zero-point vibrational corrections is determined (r_e^emp: rC-H=1.0615 A, rCtripleC=1.2085 A, rC-C = 1.3727 A) and in good agreement with the best theoretical structure (CCSD(T)/cc-pCV…
Theoretical investigations of the IR spectroscopy of Ni(C(2)S(2)H(2))(2). A case study of the P_VMWCI(2) algorithm including anharmonic effects.
2010
The near infrared (NIR) spectra of bis(ethylene-1,2-dithiolato)nickel, Ni(C(2)S(2)H(2))(2) are fully interpreted here by applying a method developed for efficient automatic computation of both the infrared wave numbers and the intensities. The employed procedure uses parallel variational multiple window configuration interaction wave functions, the so-named P_VMWCI(2) algorithm, which incorporates both the mechanical and the electric anharmonic effects. It is shown that inclusion of anharmonicities is crucial for correctly assigning the fundamental, combination, and overtone vibrational frequencies in the infrared spectrum of the target system, for which conflicting assignments are found in…
Dynamic properties of some β-chain mutant hemoglobins
1995
The thermal behavior of the Soret band relative to the carbonmonoxy derivatives of some beta-chain mutant hemoglobins is studied in the temperature range 300-10 K and compared to that of wild-type carbonmonoxy hemoglobin. The band profile at various temperatures is modeled as a Voigt function that accounts for homogeneous broadening and for the coupling with high- and low-frequency vibrational modes, while inhomogeneous broadening is taken into account with a gaussian distribution of purely electronic transition frequencies. The various contributions to the over-all bandwidth are singled out with this analysis and their temperature dependence, in turn, gives information on structural and dy…
Melting temperature prediction by thermoelastic instability: An ab initio modelling, for periclase (MgO)
2021
Abstract Melting temperature (TM) is a crucial physical property of solids and plays an important role for the characterization of materials, allowing us to understand their behavior at non-ambient conditions. The present investigation aims i) to provide a physically sound basis to the estimation of TM through a “critical temperature” (TC), which signals the onset of thermodynamic instability due to a change of the isothermal bulk modulus from positive to negative at a given PC-VC-TC point, such that (∂P/∂V)VC,TC = -(∂2F/∂V2) VC,TC = 0; ii) to discuss the case of periclase (MgO), for which accurate melting temperature observations as a function of pressure are available. Using first princip…
Interpretation of the Cu K-edge EXAFS spectra of Cu3N using ab initio molecular dynamics
2020
Financial support provided by ERDF project No. 1.1.1.2/VIAA/l/16/147 (1.1.1.2/16/I/001) under the activity “Post-doctoral research aid” realized at the Institute of Solid State Physics, University of Latvia is greatly acknowledged. This work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under the project ID s681 .
Predicting the structure and vibrational frequencies of ethylene using harmonic and anharmonic approaches at the Kohn–Sham complete basis set limit
2016
In this work, regular convergence patterns of the structural, harmonic, and VPT2-calculated anharmonic vibrational parameters of ethylene towards the Kohn–Sham complete basis set (KS CBS) limit are demonstrated for the first time. The performance of the VPT2 scheme implemented using density functional theory (DFT-BLYP and DFT-B3LYP) in combination with two Pople basis sets (6-311++G** and 6-311++G(3df,2pd)), the polarization-consistent basis sets pc-n, aug-pc-n, and pcseg-n (n = 0, 1, 2, 3, 4), and the correlation-consistent basis sets cc-pVXZ and aug-cc-pVXZ (X = D, T, Q, 5, 6) was tested. The BLYP-calculated harmonic frequencies were found to be markedly closer than the B3LYP-calculated h…
Semiquantum molecular dynamics simulation of thermal properties and heat transport in low-dimensional nanostructures
2012
We present a detailed description of the semi-quantum approach to the molecular dynamics simulation of stochastic dynamics of a system of interacting particles. Within this approach, the dynamics of the system is described with the use of classical Newtonian equations of motion in which the quantum effects are introduced through random Langevin-like forces with a specific power spectral density (the color noise). The color noise describes the interaction of the molecular system with the thermostat. We apply this technique to the simulation of the thermal properties of different low-dimensional nanostructures. Within this approach, we simulate the specific heat and heat transport in carbon n…
Subharmonic excitation of the eigenmodes of charged particles in a Penning trap
2004
When parametrically excited, a harmonic system reveals a nonlinear dynamical behaviour which is common to non-deterministic phenomena. The ion motion in a Penning trap -- which can be regarded as a system of harmonic oscillators -- offers the possibility to study anharmonic characteristics when perturbed by an external periodical driving force. In our experiment we excited an electron cloud stored in a Penning trap by applying an additional quadrupole r.f. field to the endcaps. We observed phenomena such as individual and center-of-mass oscillations of an electron cloud and fractional frequencies, so-called subharmonics, to the axial oscillation. The latter show a characteristic threshold b…
Spectral broadening of the Soret band in myoglobin: an interpretation by the full spectrum of low-frequency modes from a normal modes analysis.
2005
In this work the temperature dependence of the Soret band line shape in carbon-monoxy myoglobin is re-analyzed by using both the full correlator approach in the time domain and the frequency domain approach. The new analyses exploit the full density of vibrational states of carbon-monoxy myoglobin available from normal modes analysis, and avoid the artificial division of the entire set of vibrational modes coupled to the Soret transition into "high-frequency" and "low-frequency" subsets; the frequency domain analysis, however, makes use of the so-called short-times approximation, while the time domain one avoids it. Time domain and frequency domain analyses give very similar results, thus s…
Conformational substates and dynamic properties of carbonmonoxy hemoglobin.
2003
Heme pocket dynamics of human carbonmonoxy hemoglobin (HbCO) is studied by Fourier transform infrared spectroscopy. The CO stretching band at various temperatures in the interval 300-10 K is analyzed in terms of three taxonomic A substates; however, in HbCO the band attributed to the A(1) taxonomic substate accounts for approximately 90% of the total intensity in the pH range 8.8-4.5. Two different regimes as a function of temperature are observed: below 160 K, the peak frequency and the bandwidth of the A(1) band have constant values whereas, above this temperature, a linear temperature dependence is observed, suggesting the occurrence of transitions between statistical substates within th…