Search results for "Anti-virulence"

showing 9 items of 9 documents

Synthesis and biofilm formation reduction of pyrazole-4-carboxamide derivatives in some Staphylococcus aureus strains

2016

The ability of several N-phenyl-1H-pyrazole-4-carboxamide derivatives and other pyrazoles opportunely modified at the positions 3, 4 and 5, to reduce the formation of the biofilm in some Staphylococcus aureus strains (ATCC 29213, ATCC 25923 and ATCC 6538) were investigated. All the tested compounds were able, although to a different extent, to reduce the biofilm formation of the three bacterial strains considered. Among these, the 1-(2,5-dichlorophenyl)-5-methyl-N-phenyl-1H-pyrazole-4-carboxamide 14 resulted as the best inhibitor of biofilm formation showing an IC50 ranging from 2.3 to 32 μM, against all the three strains of S. aureus. Compound 14 also shows a good protective effect in vivo…

0301 basic medicineStaphylococcus aureusmedicine.drug_class030106 microbiologyCarboxamideMothsN-phenyl-1H-pyrazole-4-carboxamidePyrazoleSettore BIO/19 - Microbiologia Generalemedicine.disease_cause01 natural sciencesMicrobiologyStructure-Activity Relationship03 medical and health scienceschemistry.chemical_compoundDrug DiscoveryInhibition of biofilm formationmedicineAnimalsIC50PharmacologyWaxVirulencebiology010405 organic chemistryDrug Discovery3003 Pharmaceutical ScienceAnti-virulenceOrganic ChemistryBiofilmS. aureuGeneral MedicineStaphylococcal Infectionsbiology.organism_classificationSettore CHIM/08 - Chimica FarmaceuticaAnti-Bacterial Agents0104 chemical sciencesGalleria mellonellaHydrazinesSettore AGR/11 - Entomologia Generale E ApplicatachemistryStaphylococcus aureusBiofilmsLarvavisual_artWax moth larva modelvisual_art.visual_art_mediumPyrazolesLead compoundEuropean Journal of Medicinal Chemistry
researchProduct

New Thiazole Nortopsentin Analogues Inhibit Bacterial Biofilm Formation.

2018

New thiazole nortopsentin analogues were conveniently synthesized and evaluated for their activity as inhibitors of biofilm formation of relevant Gram-positive and Gram-negative pathogens. All compounds were able to interfere with the first step of biofilm formation in a dose-dependent manner, showing a selectivity against the staphylococcal strains. The most active derivatives elicited IC50 values against Staphylococcus aureus ATCC 25923, ranging from 0.40&ndash

0301 basic medicinethiazole derivativeAquatic OrganismsIndolesDrug ResistancePharmaceutical ScienceBacterial growthAntibiofilm agentmedicine.disease_cause01 natural scienceschemistry.chemical_compoundDrug Discoveryanti-virulence agents; antibiofilm agents; marine alkaloids; nortopsentin analogues; thiazole derivatives; Anti-Bacterial Agents; Aquatic Organisms; Biofilms; Humans; Imidazoles; Indoles; Inhibitory Concentration 50; Staphylococcal Infections; Staphylococcus aureus; Thiazoles; Drug Resistance; Bacterial; Anti-virulence agents; Antibiofilm agents; Marine alkaloids; Nortopsentin analogues; Thiazole derivativesPharmacology Toxicology and Pharmaceutics (miscellaneous)lcsh:QH301-705.5Aquatic OrganismBiofilmBacterialImidazolesantibiofilm agentsStaphylococcal InfectionsAnti-Bacterial Agentsnortopsentin analoguesBiochemistryStaphylococcus aureusStaphylococcus aureumarine alkaloidsthiazole derivativesSelectivityHumanStaphylococcus aureusAnti-virulence agentNortopsentin analogueArticle03 medical and health sciencesInhibitory Concentration 50Anti-Bacterial AgentDrug Resistance BacterialIc50 valuesmedicineHumansThiazoleImidazoleStaphylococcal Infection010405 organic chemistryBiofilmSettore CHIM/08 - Chimica Farmaceutica0104 chemical sciencesmarine alkaloidThiazoles030104 developmental biologychemistrylcsh:Biology (General)anti-virulence agentsIndoleBiofilmsThiazoleMarine drugs
researchProduct

Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance

2018

Abstract Biofilm formation significantly contributes to microbial survival in hostile environments and it is currently considered a key virulence factor for pathogens responsible for serious chronic infections. In the last decade many efforts have been made to identify new agents able to modulate bacterial biofilm life cycle, and many compounds have shown interesting activities in inhibiting biofilm formation or in dispersing pre-formed biofilms. However, only a few of these compounds were tested using in vivo models for their clinical significance. Contrary to conventional antibiotics, most of the anti-biofilm compounds act as anti-virulence agents as they do not affect bacterial growth. I…

Antibiotic resistancemedicine.drug_classAntibioticsMicrobial Sensitivity TestsBacterial growthDispersal agent01 natural sciencesVirulence factorMicrobiologySmall Molecule LibrariesStructure-Activity Relationship03 medical and health sciencesAntibiotic resistanceSmall Molecule LibrarieAnti-Bacterial AgentDrug Discoverymedicine030304 developmental biologyPharmacology0303 health sciencesBacteriaDose-Response Relationship DrugMolecular StructureMicrobial Sensitivity Test010405 organic chemistryChemistryBiofilmOrganic ChemistryBiofilmDrug Resistance MicrobialGeneral Medicinebiochemical phenomena metabolism and nutritionAnti-biofilm agentSettore CHIM/08 - Chimica FarmaceuticaSmall moleculeAnti-Bacterial Agents0104 chemical sciencesAnti-adhesion agentBiofilmsAnti-virulence compoundAnti biofilmEuropean Journal of Medicinal Chemistry
researchProduct

1,2,4-Oxadiazole topsentin analogs as staphylococcal biofilm inhibitors targeting the bacterial transpeptidase sortase A

2020

The inhibition or prevention of biofilm formation represents an emerging strategy in the war against antibiotic resistance, interfering with key players in bacterial virulence. This approach includes the inhibition of the catalytic activity of transpeptidase sortase A (Srt A), a membrane enzyme responsible for covalently attaching a wide variety of adhesive matrix molecules to the peptidoglycan cell wall in Gram-positive strains. A new series of seventeen 1,2,4-oxadiazole derivatives was efficiently synthesized and screened as potential new anti-virulence agents. The ability of inhibiting biofilm formation was evaluated against both Gram-positive and Gram-negative pathogens. Remarkably, all…

Indoles124-Oxadiazoles Antibiofilm activity Sortase A inhibitors Anti-virulence agents Marine alkaloids Topsentin analogs01 natural scienceslaw.inventionchemistry.chemical_compoundMarine alkaloidslawDrug DiscoveryPathogenchemistry.chemical_classificationOxadiazoles0303 health sciencesChemistry4-OxadiazolesImidazolesGeneral MedicineStaphylococcal InfectionsAminoacyltransferasesAnti-Bacterial AgentsCysteine EndopeptidasesAnti-virulence agentsBiochemistrySortase AAntibiofilm activityPseudomonas aeruginosaTopsentin analogsRecombinant DNA124-Oxadiazoles; Anti-virulence agents; Antibiofilm activity; Marine alkaloids; Sortase A inhibitors; Topsentin analogsStaphylococcus aureus12Sortase A inhibitorsCell LineCell wall03 medical and health sciencesAntibiotic resistanceBacterial Proteins124-OxadiazolesHumansPseudomonas Infections030304 developmental biologyPharmacology010405 organic chemistryOrganic ChemistryBiofilmSettore CHIM/08 - Chimica Farmaceutica0104 chemical sciencesEnzymeBiofilmsPeptidoglycan
researchProduct

2,6-Disubstituted imidazo[2,1-b][1,3,4]thiadiazole derivatives as potent staphylococcal biofilm inhibitors.

2019

Abstract A class of 36 new 2-(6-phenylimidazo[2,-1-b][1,3,4]thiadiazol-2-yl)-1H-indoles was efficiently synthesized and evaluated for their anti-biofilm properties against the Gram-positive bacterial reference strains Staphylococcus aureus ATCC 25923, S. aureus ATCC 6538 and Staphylococcus epidermidis ATCC 12228, and the Gram-negative strains Pseudomonas aeruginosa ATCC 15442 and Escherichia coli ATCC 25922. Many of these new compounds, were able to inhibit biofilm formation of the tested staphylococcal strains showing BIC50 lower than 10 μg/ml. In particular, derivatives 9c and 9h showed remarkable anti-biofilm activity against S. aureus ATCC 25923 with BIC50 values of 0.5 and 0.8 μg/ml, r…

Indoles3Anti-virulence agentStaphylococcus1-b][1Bacterial growthAnti-Biofilm agentsmedicine.disease_causeSettore BIO/19 - Microbiologia GeneraleGram-Positive Bacteriaimidazo[201 natural sciencesVirulence factorMicrobiology03 medical and health sciencesStaphylococcus epidermidisDrug DiscoveryGram-Negative BacteriaThiadiazolesmedicineStaphylococcal biofilm inhibitorsEscherichia coli030304 developmental biologyPharmacology0303 health sciences4]thiadiazole derivativesbiologyStaphylococcal biofilm inhibitorVirulenceAnti-Biofilm agents; Anti-virulence agents; imidazo[21-b][134]thiadiazole derivatives; Staphylococcal biofilm inhibitors; Anti-Bacterial Agents; Biofilms; Gram-Negative Bacteria; Gram-Positive Bacteria; Indoles; Staphylococcus; Thiadiazoles; Virulence010405 organic chemistryPseudomonas aeruginosaChemistryimidazo[21-b][134]thiadiazole derivativesOrganic ChemistryBiofilmGeneral Medicinebiology.organism_classificationSettore CHIM/08 - Chimica FarmaceuticaAnti-Biofilm agent0104 chemical sciencesAnti-Bacterial AgentsAnti-virulence agentsStaphylococcus aureusBiofilms1 3 4 thiadiazole derivativesEuropean journal of medicinal chemistry
researchProduct

Recent Developments in the Inhibition of Bacterial Adhesion as Promising Anti-Virulence Strategy

2023

Infectious diseases caused by antimicrobial-resistant strains have become a serious threat to global health, with a high social and economic impact. Multi-resistant bacteria exhibit various mechanisms at both the cellular and microbial community levels. Among the different strategies proposed to fight antibiotic resistance, we reckon that the inhibition of bacterial adhesion to host surfaces represents one of the most valid approaches, since it hampers bacterial virulence without affecting cell viability. Many different structures and biomolecules involved in the adhesion of Gram-positive and Gram-negative pathogens can be considered valuable targets for the development of promising tools t…

Inorganic Chemistryantibiotic resistanceanti-virulence agentsOrganic Chemistrybiofilm formationGeneral MedicinePhysical and Theoretical Chemistrybacterial adhesionMolecular BiologySpectroscopyCatalysisComputer Science Applications
researchProduct

Curcumin derivatives as inhibitors of Gram positive and Gram negative biofilm formation

2015

Staphylococcus aureus Pseudomonas aeruginosa biofilm anti-virulence agents
researchProduct

New Anti-Adhesion Agents In The Development of Antivirulence Drugs

2015

Gram-positive bacteria are a significant cause of nosocomial and community-acquired infections associated with diseases of high morbidity and mortality. Moreover, antibiotic resistance of important Gram-positive pathogens, such as Staphylococcus aureus, Streptococcus pneumoniae and Enterococcus faecalis is one of the major worldwide health problems. Over the last decade, many studies have focused on agents that target the virulence of important pathogens without killing or inhibiting their growth therefore imposing limited selective pressure to promote the development and spread of resistance mechanisms [1]enterococci and streptococci, sortase A plays a critical role in Gram-positive bacter…

antibiotic resistanceanti-virulence agentsSettore BIO/19 - Microbiologia GeneraleSettore CHIM/08 - Chimica Farmaceuticabiofilm
researchProduct

Synthesis and biological evaluation of new imidazo[2,1-b][1,3,4]thiadiazole derivatives: as anticancer and antibiofilm agents, and preclinical invest…

2020

antiproliferative activityStaphylococcal biofilm inhibitorhypoxiaAnti-virulence agentpancreatic ductal adenocarcinomachemoresistancemodulation of EMTlactate dehydrogenaseproton-coupled folate transporterspheroids shrinkageSettore CHIM/08 - Chimica Farmaceuticamalignant pleural and peritoneal mesotheliomaanti-biofilm agentimidazo[21-b][134]thiadiazole derivativeinhibition of migrationPTK2/FAKxenograftpemetrexedprognosi
researchProduct