Search results for "Apprentissage profond"

showing 3 items of 13 documents

Deep learning architectures for automatic detection of viable myocardiac segments

2021

Thesis abstract: Deep learning architectures for automatic detection of viable myocardiac segmentsAccurate myocardial segmentation in LGE-MRI is an important purpose for diagnosis assistance of infarcted patients. Nevertheless, manual delineation of target volumes is time-consuming and depends on intra- and inter-observer variability. This thesis aims at developing efficient deep learning-based methods for automatically segmenting myocardial tissues (healthy myocardium, myocardial infarction, and microvascular obstruction) on LGE-MRI. In this regard, we first proposed a 2.5D SegU-Net model based on a fusion framework (U-Net and SegNet) to learn different feature representations adaptively. …

Myocardial infarctionApprentissage profondMyocarde[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV]MyocardiumObstruction microvasculaireSegmentation myocardiqueDeep learningInfarctus du myocardeMyocardial segmentationLge-MriLge-IrmMicrovascular obstruction
researchProduct

Classification par méthodes d’apprentissage supervisé et faiblement superviséd’images multimodales pour l’aide au diagnostic du lentigo malin en derm…

2021

Carried out in collaboration with the Saint-Étienne University Hospital, this work provides additional information to help the skin diagnosis by providing new decision methods on Lentigo Maligna and Lentigo Maligna Melanoma pathologies. To this end, the modalities regularly used in clinical conditions are made available to this work and are orchestrated within a multimodal process. Among image modalities, may be mentioned the clinical photography, the dermatoscopy, and the confocal reflectance microscopy. Initially, the first steps of this manuscript focus on reflectance confocal microscopy as the work in computer diagnostic assistance is relatively underdeveloped, in particular on the dete…

Upervised learning[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]Apprentissage profond[INFO.INFO-TS] Computer Science [cs]/Signal and Image ProcessingLentigo Maligna MelanomaImage classification[INFO.INFO-IM] Computer Science [cs]/Medical ImagingDermatoscopieDermatologyMultimodalité[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Dermatoscopy[INFO.INFO-IM]Computer Science [cs]/Medical ImagingApprentissage faiblement superviséMultimodalityDermatologieFusion de donnéesWeakly supervised learningLentigo MalignaDeep learningApprentissage superviséData fusionMicroscopie confocale par réflectanceClassification d'images[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV][INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]Confocal reflectance microscopySupervised learning
researchProduct

Application of LSTM architectures for next frame forecasting in Sentinel-1 images time series

2020

L'analyse prédictive permet d'estimer les tendances des évènements futurs. De nos jours, les algorithmes Deep Learning permettent de faire de bonnes prédictions. Cependant, pour chaque type de problème donné, il est nécessaire de choisir l'architecture optimale. Dans cet article, les modèles Stack-LSTM, CNN-LSTM et ConvLSTM sont appliqués à une série temporelle d'images radar sentinel-1, le but étant de prédire la prochaine occurrence dans une séquence. Les résultats expérimentaux évalués à l'aide des indicateurs de performance tels que le RMSE et le MAE, le temps de traitement et l'index de similarité SSIM, montrent que chacune des trois architectures peut produire de bons résultats en fon…

[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]FOS: Computer and information sciencesApprentissage profondComputer Science - Machine LearningImage and Video Processing (eess.IV)[INFO.INFO-NE] Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]PrévisionComputer Science - Neural and Evolutionary ComputingDeep Learning AlgorithmsPrédiction[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]Electrical Engineering and Systems Science - Image and Video ProcessingLand cover change[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Machine Learning (cs.LG)SARIMA[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV][INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]FOS: Electrical engineering electronic engineering information engineeringSatellite imagesNeural and Evolutionary Computing (cs.NE)LSTMPredictionForecastingImages satellitaires
researchProduct