Search results for "Arabo"
showing 10 items of 151 documents
Parabolic equations with nonlinear singularities
2011
Abstract We show the existence of positive solutions u ∈ L 2 ( 0 , T ; H 0 1 ( Ω ) ) for nonlinear parabolic problems with singular lower order terms of the asymptote-type. More precisely, we shall consider both semilinear problems whose model is { u t − Δ u + u 1 − u = f ( x , t ) in Ω × ( 0 , T ) , u ( x , 0 ) = u 0 ( x ) in Ω , u ( x , t ) = 0 on ∂ Ω × ( 0 , T ) , and quasilinear problems having natural growth with respect to the gradient, whose model is { u t − Δ u + ∣ ∇ u ∣ 2 u γ = f ( x , t ) in Ω × ( 0 , T ) , u ( x , 0 ) = u 0 ( x ) in Ω , u ( x , t ) = 0 on ∂ Ω × ( 0 , T ) , with γ > 0 . Moreover, we prove a comparison principle and, as an application, we study the asymptotic behav…
Cinematic dialogue, literary dialogue, and the art of adaptation : dialogue metamorphosis in the film adaptation of The green mile
2004
"Ludzka krotochwila" na scenie teatru świata w twórczości Mikołaja Reja i Marcina Bielskiego
2019
Artykuł jest próbą interpretacji dzieł Mikołaja Reja i Marcina Bielskiego w kategoriach encyklopedycznego teatru. Taka konstrukcja stanowi odwzorowanie obrazu ówczesnego świata. Można mówić o zgodności między uczonymi treściami a wielką machiną theatrum mundi, którego struktury, relacje i zakres sprawnie funkcjonują w zamkniętym dyskursie literackich utworów. „Krotochwila ludzka” staje się więc miejscem zmagań człowieka z własnymi słabościami i losem. Staropolscy pisarze, aby zilustrować tę walkę, posłużyli się popularnym w renesansie mitem o bogini Kirke i jej ofiarach zamienionych w zwierzęta. Maski faunistyczne stanowiły znakomite alegorie występków ludzkich, chociaż mogły również przeds…
Reinventing the story : inventions in the film adaptation The green mile by Frank Darabont
2006
“Constancia”. Dalla Sicilia a New York un esempio metodologico per la valorizzazione delle collezioni ecclesiastiche
2022
Il contributo si offre come proposta metodologica ai fini della valorizzazione delle collezioni diocesane partendo dall’esperienza della mostra “Constancia. Donne al potere nell’impero mediterraneo di Federico II”, curata dagli autori, insieme alla prof. Di Natale, all’Istituto Italiano di Cultura di New York nei mesi di marzo e aprile 2022. Il testo illustra il percorso che ha condotto all’elaborazione del progetto curatoriale, a partire dall’ottavo centenario della morte di Costanza d’Aragona cui sono state correlate altre tre Costanza rispettivamente madre, figlia e nipote di Federico II di Svevia, offrendo così un originale taglio al femminile e un resoconto delle quattro donne al poter…
Quantitative Approximation Properties for the Fractional Heat Equation
2017
In this note we analyse \emph{quantitative} approximation properties of a certain class of \emph{nonlocal} equations: Viewing the fractional heat equation as a model problem, which involves both \emph{local} and \emph{nonlocal} pseudodifferential operators, we study quantitative approximation properties of solutions to it. First, relying on Runge type arguments, we give an alternative proof of certain \emph{qualitative} approximation results from \cite{DSV16}. Using propagation of smallness arguments, we then provide bounds on the \emph{cost} of approximate controllability and thus quantify the approximation properties of solutions to the fractional heat equation. Finally, we discuss genera…
An evolutionary Haar-Rado type theorem
2021
AbstractIn this paper, we study variational solutions to parabolic equations of the type $$\partial _t u - \mathrm {div}_x (D_\xi f(Du)) + D_ug(x,u) = 0$$ ∂ t u - div x ( D ξ f ( D u ) ) + D u g ( x , u ) = 0 , where u attains time-independent boundary values $$u_0$$ u 0 on the parabolic boundary and f, g fulfill convexity assumptions. We establish a Haar-Rado type theorem: If the boundary values $$u_0$$ u 0 admit a modulus of continuity $$\omega $$ ω and the estimate $$|u(x,t)-u_0(\gamma )| \le \omega (|x-\gamma |)$$ | u ( x , t ) - u 0 ( γ ) | ≤ ω ( | x - γ | ) holds, then u admits the same modulus of continuity in the spatial variable.
Asymptotic mean value formulas for parabolic nonlinear equations
2021
In this paper we characterize viscosity solutions to nonlinear parabolic equations (including parabolic Monge–Ampère equations) by asymptotic mean value formulas. Our asymptotic mean value formulas can be interpreted from a probabilistic point of view in terms of dynamic programming principles for certain two-player, zero-sum games. peerReviewed
Guaranteed error bounds and local indicators for adaptive solvers using stabilised space-time IgA approximations to parabolic problems
2019
The paper is concerned with space–time IgA approximations to parabolic initial–boundary value problems. We deduce guaranteed and fully computable error bounds adapted to special features of such type of approximations and investigate their efficiency. The derivation of error estimates is based on the analysis of the corresponding integral identity and exploits purely functional arguments in the maximal parabolic regularity setting. The estimates are valid for any approximation from the admissible (energy) class and do not contain mesh-dependent constants. They provide computable and fully guaranteed error bounds for the norms arising in stabilised space–time approximations. Furthermore, a p…
On the second-order regularity of solutions to the parabolic p-Laplace equation
2022
AbstractIn this paper, we study the second-order Sobolev regularity of solutions to the parabolic p-Laplace equation. For any p-parabolic function u, we show that $$D(\left| Du\right| ^{\frac{p-2+s}{2}}Du)$$ D ( D u p - 2 + s 2 D u ) exists as a function and belongs to $$L^{2}_{\text {loc}}$$ L loc 2 with $$s>-1$$ s > - 1 and $$1<p<\infty $$ 1 < p < ∞ . The range of s is sharp.