Search results for "Arrhenius equation"

showing 10 items of 83 documents

Current‐voltage curves of bipolar membranes

1992

Bipolar membranes consist of a layered ion‐exchange structure composed of a cation selective membrane joined to an anion selective membrane. They are analogous to semiconductor p‐n devices as both of them present current‐voltage curves exhibiting similar rectification properties. In this article, we present some current‐voltage curves obtained for different bipolar membranes at several temperatures. The results can be interpreted in terms of a simple model for ion transport and field‐enhanced water dissociation previously developed. The mechanism responsible for water splitting is assumed to be a catalytic proton transfer reaction between the charged groups and the water at the membrane int…

Arrhenius equationIv CharacteristicProton TransportTransfer ReactionsMembranesChemistryMembranes ; Iv Characteristic ; Temperature Effects ; Arrhenius Equation ; Water ; Dissociation ; Transfer Reactions ; Proton TransportUNESCO::FÍSICAGeneral Physics and AstronomyWaterChemical reactionDissociation (chemistry)Ionsymbols.namesakeTemperature EffectsMembraneChemical physics:FÍSICA [UNESCO]Proton transportsymbolsWater splittingTransport phenomenaArrhenius EquationDissociationNuclear chemistry
researchProduct

Domain wall energy in quasi-one-dimensional Fe/W(110) nanostripes

2003

The magnetic susceptibility in Fe/W(110) nanostripes decreases exponentially with increasing temperature according to an Arrhenius law which indicates a quasi-one-dimensional behavior. The interface energy of the Arrhenius law corresponds to the domain wall energy of a domain wall across a single stripe, separating fluctuating regions of homogeneous magnetization. The domain wall energy increases linearly with the width of the stripes, revealing a negative offset which we attribute to boundary effects. Domain wall energies have been determined for Fe/W(110) nanostripes coated with Au and Pd and are compared to values for uncoated Fe/W(110) nanostripes in ultrahigh vacuum.

Arrhenius equationMagnetizationsymbols.namesakeMaterials scienceBoundary effectsCondensed matter physicsHomogeneoussymbolsA domainQuasi one dimensionalMagnetic susceptibilitySurface energyPhysical Review B
researchProduct

Temperature dependent mechanical unfolding of calixarene nanocapsules studied by molecular dynamics simulations.

2019

Using atomistic molecular dynamics simulations, we study the temperature dependence of the mechanical unfolding of a model supramolecular complex, a dimer of interlocked calixarene capsules. This system shows reversible transitions between two conformations that are stabilized by different networks of hydrogen bonds. We study the forced dissociation and formation of these networks as a function of temperature and find a strong impact of the nonequilibrium conditions imposed by pulling the system mechanically. The kinetics of the transition between the two conformations is ideally suited to investigate the range of validity of the stochastic models employed in the analysis of force dependent…

Arrhenius equationMaterials science010304 chemical physicsHydrogen bondKineticsSupramolecular chemistryGeneral Physics and AstronomyNon-equilibrium thermodynamicsThermodynamics010402 general chemistryKinetic energy01 natural sciencesDissociation (chemistry)0104 chemical sciencessymbols.namesakeMolecular dynamics0103 physical sciencessymbolsPhysical and Theoretical ChemistryThe Journal of chemical physics
researchProduct

Modeling of Point Defects in Corundum Crystals

1994

Several different approaches including Hartree-Fock ab initio cluster calculations, semiempirical INDO calculations, and atom-atom potentials were used for modeling of the spatial and electronic structure as well as migration mechanisms of both intrinsic defects (self-trapped and defect-trapped holes, O and Al vacancies) and impurities (transition-metal ions like Co, Fe, Mg, Mn, Ti). The atomic structure of all hole centers is found to be similar to V[sub K] centers in alkali halides (two-site model); their formation is energetically favorable. The energy required for 60[degree] hole reorientations inside the basic oxygen triangles is found to be similar to both the energy for hops between …

Arrhenius equationMaterials scienceAb initioIonic bondingElectronic structureActivation energyMolecular physicsIonsymbols.namesakeAb initio quantum chemistry methodsVacancy defectPhysics::Atomic and Molecular ClustersMaterials ChemistryCeramics and CompositessymbolsPhysical chemistryJournal of the American Ceramic Society
researchProduct

O2 Diffusion in Amorphous SiO2 Nanoparticles Probed by Outgassing

2012

An experimental study of the O2 diffusion process in nanoparticles of amorphous SiO2 in the temperature range from 98 to 157 °C was carried out by Raman and photoluminescence techniques. We studied O2 diffusion in high purity silica nanoparticles with a mean diameter of 14, 20, and 40 nm detecting the outgassing of molecules trapped during the manufacturing. The kinetics of diffusion is well described for all the investigated nanoparticles by the Fick’s equation proving its applicability to nanoscale systems. The diffusion coefficient features an Arrhenius law temperature dependence in the explored temperature range, and the diffusion coefficient values are in good agreement with extrapolat…

Arrhenius equationMaterials scienceDiffusionSettore FIS/01 - Fisica Sperimentalenanosilica diffusion raman spectroscopyAnalytical chemistryPhysics::OpticsAtmospheric temperature rangeSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAmorphous solidOutgassingsymbols.namesakeGeneral EnergyDiffusion processsymbolsEffective diffusion coefficientPhysical and Theoretical ChemistryRaman spectroscopyThe Journal of Physical Chemistry C
researchProduct

Temperature dependence of the rate constant of hydrogen isotope interactions with a lithium capillary-porous system under reactor irradiation

2013

Abstract Experiments with a sample of a lithium capillary-porous system (CPS) were performed at the reactor IVG-1.M of the Institute of Atomic Energy NNC RK to study the effects of neutron irradiation on the parameters of hydrogen isotope interactions with a lithium CPS. The absorption technique was used during the experiments, and this technique allowed the temperature dependences of the hydrogen isotope interaction rate constants with the lithium CPS to be obtained under various reactor powers. The obtained dependencies were used to determine the main interaction parameters: the activation energies and the pre-exponents of the Arrhenius dependence of the hydrogen interaction rate constant…

Arrhenius equationMaterials scienceHydrogenCapillary actionMechanical EngineeringDivertortechnology industry and agricultureAnalytical chemistrychemistry.chemical_elementcomplex mixturessymbols.namesakeReaction rate constantNuclear Energy and EngineeringchemistrysymbolsAstrophysics::Solar and Stellar AstrophysicsComputer Science::Programming LanguagesGeneral Materials ScienceLithiumPhysics::Atomic PhysicsIrradiationAbsorption (chemistry)Civil and Structural EngineeringFusion Engineering and Design
researchProduct

Competitive relaxation processes of oxygen deficient centers in silica

2003

Physical review / B 67, 033202 (2003). doi:10.1103/PhysRevB.67.033202

Arrhenius equationMaterials sciencePhotoluminescenceQuenching (fluorescence)Oxygen deficientRelaxation (NMR)530symbols.namesakeAmplitudeExcited statesymbolsddc:530Atomic physicsLuminescencePhysical Review B
researchProduct

Effect of Zr4+Doping on the Electrical Properties of BaTiO3Ceramics

2011

The BaZrxTi1-xO3 for 0⩽x⩽15 ceramics were prepared by a conventional solid state reaction method and were determined by an X-ray diffraction (XRD) and scanning electron microscopy (SEM) for crystallographic, surface morphological and compositional studies. A single phase with perovskite structure was identified in the samples at room temperature. No significant impurities were detected in an EDS spectrum and the samples are in good stoichiometric ratio. The temperature dependence of electric conductivity was evaluated in the temperature range from 300 to 550 K for a selected frequency by a HP4284 LCR meter. The activation energy was calculated from the Arrhenius plots.

Arrhenius equationMaterials scienceScanning electron microscopeDopingAnalytical chemistryActivation energyAtmospheric temperature rangeCondensed Matter PhysicsElectronic Optical and Magnetic Materialssymbols.namesakeImpurityElectrical resistivity and conductivityLCR metersymbolsFerroelectrics
researchProduct

Solidification behavior of the theta system 2-propanol/poly(n-butyl methacrylate) I. Influences of thermoreversible gelation on stationary flow

1994

Zero shear viscosities, η0, were determined by means of a magnetoviscometer for melts of poly(n-butyl methacrylate) (M = 8.7 to 450 kg/mol, T =53.5 to 200°C) and for concentrated solutions of the highest molecular weight sample in isopropanol (T = 34.8 to 131.5 °C). Master curves can be constructed in both cases if the reference temperature is set proportional to the gelation temperature of the particular fluid. Special intersegmental interactions (eventually leading to thermoreversible gelation) can above all be felt in η0 (T) and in M c , the critical molecular weight determined in plots of log η0 vs. log M. As the temperature is lowered, the behavior changes from WLF to Arrhenius, and M …

Arrhenius equationMaterials scienceTheta solventThermodynamicsCondensed Matter PhysicsMethacrylatePoly n-butyl methacrylatePropanolShear (sheet metal)symbols.namesakechemistry.chemical_compoundchemistryPolymer chemistrysymbolsStationary flowGeneral Materials ScienceGlass transitionRheologica Acta
researchProduct

Retention of Pb isotopes in glass surfaces for retrospective assessment of radon exposure

2006

Abstract In recent years there has been increasing interest in radio-epidemiological techniques to retrospectively measure the radon dose exposure by determining the activity of 210Pb, the longest-lived 222Rn progeny, in glass surface layers. In this study the diffusion of 39 keV 209Pb+ ions implanted into glass using the IGISOL facility has been studied under conditions that mimic the recoil implantation of 210Pb from 222Rn. The resulting depth distributions of 209Pb were then measured after heat treatment in vacuum at different temperatures by a sputter erosion technique. The diffusion coefficient could be described by an Arrhenius equation D = D0exp(−H/kT) where D 0 = 0.30 - 0.24 + 1.14 …

Arrhenius equationNuclear and High Energy PhysicsIsotopeAnnealing (metallurgy)Radiochemistrychemistry.chemical_elementRadon01 natural sciences030218 nuclear medicine & medical imagingRadon exposureIon03 medical and health sciencessymbols.namesake0302 clinical medicineRecoilchemistrySputtering0103 physical sciencessymbols010306 general physicsInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct