Search results for "Artificial neural network"
showing 10 items of 694 documents
Automated microorganisms activity detection on the early growth stage using artificial neural networks
2019
The paper proposes an approach of a novel non-contact optical technique for early evaluation of microbial activity. Noncontact evaluation will exploit laser speckle contrast imaging technique in combination with artificial neural network (ANN) based image processing. Microbial activity evaluation process will comprise acquisition of time variable laser speckle patterns in given sample, ANN based image processing and visualization of obtained results. The proposed technology will measure microbial activity (like growth speed) and implement these results for counting live microbes. It is expected, that proposed technology will help to evaluate number of colony forming units (CFU) and return r…
Tabu and Scatter Search for Artificial Neural Networks
2003
In this paper we address the problem of training multilayer feed-forward neural networks. These networks have been widely used for both prediction and classification in many different areas. Although the most popular method for training these networks is back propagation, other optimization methods such as tabu search or scatter search have been applied to solve this problem. This paper presents a new training algorithm based on the tabu search methodology that incorporates elements for search intensification and diversification by utilizing strategic designs where other previous approaches resort to randomization. Our method considers context and search information, as it is provided by th…
Fall Detection Based on the Instantaneous Doppler Frequency : A Machine Learning Approach
2019
Modern societies are facing an ageing problem which comes with increased cost of healthcare. A major share of this ever-increasing cost is due to fall related injuries, which urges the development of fall detection systems. In this context, this paper paves the way for building of a radio-frequency-based fall detection system. This paper presents an activity simulator that generates the complex channel gain of indoor channels in the presence of one person performing three different activities, namely, slow fall, fast fall, and walking. We built a machine learning framework for activity recognition based on the complex channel gain. We assess the recognition accuracy of three different class…
Constructing Interpretable Classifiers to Diagnose Gastric Cancer Based on Breath Tests
2017
Quick, inexpensive and accurate diagnosis of gastric cancer is a necessity, but at this moment the available methods do not hold up. One of the most promising possibilities is breath test analysis, which is quick, relatively inexpensive and comfortable to the person tested. However, this method has not yet been well explored. Therefore in this article the authors propose using transparent classification models to explain diagnostic patterns and knowledge, which is acquired in the process. The models are induced using decision tree classification algorithms and RIPPER algorithm for decision rule induction. The accuracy of these models is compared to neural network accuracy.
Adaptive Continuous Feature Binarization for Tsetlin Machines Applied to Forecasting Dengue Incidences in the Philippines
2020
The Tsetlin Machine (TM) is a recent interpretable machine learning algorithm that requires relatively modest computational power, yet attains competitive accuracy in several benchmarks. TMs are inherently binary; however, many machine learning problems are continuous. While binarization of continuous data through brute-force thresholding has yielded promising accuracy, such an approach is computationally expensive and hinders extrapolation. In this paper, we address these limitations by standardizing features to support scale shifts in the transition from training data to real-world operation, typical for e.g. forecasting. For scalability, we employ sampling to reduce the number of binariz…
Automatic Myocardial Infarction Evaluation from Delayed-Enhancement Cardiac MRI Using Deep Convolutional Networks
2021
In this paper, we propose a new deep learning framework for an automatic myocardial infarction evaluation from clinical information and delayed enhancement-MRI (DE-MRI). The proposed framework addresses two tasks. The first task is automatic detection of myocardial contours, the infarcted area, the no-reflow area, and the left ventricular cavity from a short-axis DE-MRI series. It employs two segmentation neural networks. The first network is used to segment the anatomical structures such as the myocardium and left ventricular cavity. The second network is used to segment the pathological areas such as myocardial infarction, myocardial no-reflow, and normal myocardial region. The segmented …
OmniFlowNet: a Perspective Neural Network Adaptation for Optical Flow Estimation in Omnidirectional Images
2021
International audience; Spherical cameras and the latest image processing techniques open up new horizons. In particular, methods based on Convolutional Neural Networks (CNNs) now give excellent results for optical flow estimation on perspective images. However, these approaches are highly dependent on their architectures and training datasets. This paper proposes to benefit from years of improvement in perspective images optical flow estimation and to apply it to omnidirectional ones without training on new datasets. Our network, OmniFlowNet, is built on a CNN specialized in perspective images. Its convolution operation is adapted to be consistent with the equirectangular projection. Teste…
A 4K-Input High-Speed Winner-Take-All (WTA) Circuit with Single-Winner Selection for Change-Driven Vision Sensors
2019
Winner-Take-All (WTA) circuits play an important role in applications where a single element must be selected according to its relevance. They have been successfully applied in neural networks and vision sensors. These applications usually require a large number of inputs for the WTA circuit, especially for vision applications where thousands to millions of pixels may compete to be selected. WTA circuits usually exhibit poor response-time scaling with the number of competitors, and most of the current WTA implementations are designed to work with less than 100 inputs. Another problem related to the large number of inputs is the difficulty to select just one winner, since many competitors ma…
A Review of Kernel Methods in Remote Sensing Data Analysis
2011
Kernel methods have proven effective in the analysis of images of the Earth acquired by airborne and satellite sensors. Kernel methods provide a consistent and well-founded theoretical framework for developing nonlinear techniques and have useful properties when dealing with low number of (potentially high dimensional) training samples, the presence of heterogenous multimodalities, and different noise sources in the data. These properties are particularly appropriate for remote sensing data analysis. In fact, kernel methods have improved results of parametric linear methods and neural networks in applications such as natural resource control, detection and monitoring of anthropic infrastruc…
Crane collision modelling using a neural network approach
2004
Abstract The objective of the present work is to find a Collision Detection algorithm to be used in the Virtual Reality crane simulator (UVSim®), developed by the Robotics Institute of the University of Valencia for the Port of Valencia. The method is applicable to box-shaped objects and is based on the relationship between the colliding object positions and their impact points. The tool chosen to solve the problem is a neural network, the multilayer perceptron, which adapts to the characteristics of the problem, namely, non-linearity, a large amount of data, and no a priori knowledge. The results achieved by the neural network are very satisfactory for the case of box-shaped objects. Furth…