Search results for "Artificial neural network"

showing 10 items of 694 documents

A system based on neural architectures for the reconstruction of 3-D shapes from images

1991

The connectionist approach to the recovery of 3-D shape information from 2-D images developed by the authors, is based on a system made up by two cascaded neural networks. The first network is an implementation of the BCS, an architecture which derives from a biological model of the low level visual processes developed by Grossberg and Mingolla: this architecture extracts a sort of brightness gradient map from the image. The second network is a backpropagation architecture that supplies an estimate of the geometric parameters of the objects in the scene under consideration, starting from the outputs of the BCS. A detailed description of the system and the experimental results obtained by si…

ConnectionismArtificial neural networkbusiness.industryComputer scienceTime delay neural networkDeep learningComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONsortArtificial intelligenceArchitecturebusinessBackpropagationImage (mathematics)
researchProduct

Physical integration: A causal account for consciousness

2014

The issue of integration in neural networks is intimately connected with that of consciousness. In this paper, integration as an effective level of physical organization is contrasted with a methodological integrative approach. Understanding how consciousness arises out of neural processes requires a model of integration in just causal physical terms. Based on a set of feasible criteria (physical grounding, causal efficacy, no circularity and scaling), a causal account of physical integration for consciousness centered on joint causation is outlined.

Consciousnessmedia_common.quotation_subjectModels NeurologicalintegrationperceptionCognitionPerceptionHumansCausationSet (psychology)media_commonNeuronsSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniCognitive sciencewholephysicalismUnityArtificial neural networkGeneral NeuroscienceGeneral MedicinePhysicalismconsciousneCausal efficacyConsciousnessPsychologySocial psychologyJournal of Integrative Neuroscience
researchProduct

Domestic demand predictions considering influence of external environmental parameters

2015

A precise prediction of domestic demand is very important for establishing home energy management system and preventing the damage caused by overloading. In this work, active and reactive power consumption prediction model based on historical power usage data and external environment parameter data (temperature and solar radiation) is presented for a typical Southern Norwegian house. In the presented model, a neural network is adopted as a main prediction technique and historical domestic load data of around 2 years are utilized for training and testing purpose. Temperature and global irradiation (which illustrates the solar radiation level quantitatively) are employed as external parameter…

Consumption (economics)Energy management systemEngineeringWork (thermodynamics)Artificial neural networkbusiness.industryDistribution management systemAC powerbusinessSimulationReliability engineeringPower (physics)Data modeling2015 IEEE 13th International Conference on Industrial Informatics (INDIN)
researchProduct

Deep CNN-ELM Hybrid Models for Fire Detection in Images

2018

In this paper, we propose a hybrid model consisting of a Deep Convolutional feature extractor followed by a fast and accurate classifier, the Extreme Learning Machine, for the purpose of fire detection in images. The reason behind using such a model is that Deep CNNs used for image classification take a very long time to train. Even with pre-trained models, the fully connected layers need to be trained with backpropagation, which can be very slow. In contrast, we propose to employ the Extreme Learning Machine (ELM) as the final classifier trained on pre-trained Deep CNN feature extractor. We apply this hybrid model on the problem of fire detection in images. We use state of the art Deep CNN…

Contextual image classificationArtificial neural networkComputer sciencebusiness.industryPattern recognition02 engineering and technologyConvolutional neural networkBackpropagationSupport vector machine03 medical and health sciences0302 clinical medicineSoftmax function0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligencebusinessClassifier (UML)030217 neurology & neurosurgeryExtreme learning machine
researchProduct

Support Vector Machines for Crop Classification Using Hyperspectral Data

2003

In this communication, we propose the use of Support Vector Machines (SVM) for crop classification using hyperspectral images. SVM are benchmarked to well–known neural networks such as multilayer perceptrons (MLP), Radial Basis Functions (RBF) and Co-Active Neural Fuzzy Inference Systems (CANFIS). Models are analyzed in terms of efficiency and robustness, which is tested according to their suitability to real–time working conditions whenever a preprocessing stage is not possible. This can be simulated by considering models with and without a preprocessing stage. Four scenarios (128, 6, 3 and 2 bands) are thus evaluated. Several conclusions are drawn: (1) SVM yield better outcomes than neura…

Contextual image classificationArtificial neural networkbusiness.industryComputer scienceHyperspectral imagingFuzzy control systemPerceptronMachine learningcomputer.software_genreFuzzy logicSupport vector machineComputingMethodologies_PATTERNRECOGNITIONRobustness (computer science)Radial basis functionArtificial intelligencebusinesscomputer
researchProduct

Real-time image segmentation for anomalies detection using SVM approximation

2003

In this paper, we propose a method of implementation improvement of the decision rule of the support vector machine, applied to real-time image segmentation. We present very high speed decisions (approximately 10 ns per pixel) which can be useful for detection of anomalies on manufactured parts. We propose an original combination of classifiers allowing fast and robust classification applied to image segmentation. The SVM is used during a first step, pre-processing the training set and thus rejecting any ambiguities. The hyperrectangles-based learning algorithm is applied using the SVM classified training set. We show that the hyperrectangle method imitates the SVM method in terms of perfor…

Contextual image classificationPixelArtificial neural networkImage qualitybusiness.industryComputer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONScale-space segmentationPattern recognitionImage segmentationSupport vector machineHyperrectangleComputer visionArtificial intelligencebusinessSPIE Proceedings
researchProduct

2004

The current progress in sequencing projects calls for rapid, reliable and accurate function assignments of gene products. A variety of methods has been designed to annotate sequences on a large scale. However, these methods can either only be applied for specific subsets, or their results are not formalised, or they do not provide precise confidence estimates for their predictions. We have developed a large-scale annotation system that tackles all of these shortcomings. In our approach, annotation was provided through Gene Ontology terms by applying multiple Support Vector Machines (SVM) for the classification of correct and false predictions. The general performance of the system was bench…

ContigArtificial neural networkApplied MathematicsBiologycomputer.software_genreBiochemistryGenomeComputer Science ApplicationsTerm (time)Support vector machineAnnotationStructural BiologyControlled vocabularyData miningDNA microarrayMolecular BiologycomputerBMC Bioinformatics
researchProduct

A non-supervised approach to locate and to measure the nuchal translucency by means of wavelet analysis and neural networks

2017

Ultrasound imaging is a well known noninvasive way to evaluate various diseases during the prenatal age. In particular, the thickness measure of the nuchal transucency is strictly correlated with pathologies like trisomy 13, 18 and 21. For a correct investigation, the methodology needs mid-sagittal sections and the proposed approach is based on wavelet analysis and neural network classifiers to locate components useful to identify mid-sagittal planes. To evaluate the performance and the robustness of the methodology, real clinical ultrasound images were considered, obtaining an average error of at most 0.3 millimeters in 97.4% of the cases.

Control and OptimizationArtificial neural networkSettore INF/01 - InformaticaComputer sciencebusiness.industrymid-sagittal sectionneural networksymmetry transformPattern recognitionMeasure (mathematics)Ultrasonic imagingClinical ultrasoundWaveletComputer Networks and CommunicationNuchal translucencyRobustness (computer science)Artificial IntelligenceUltrasound imagingArtificial intelligencewavelet analysibusinessnuchal translucencyInformation Systems
researchProduct

Artificial neural networks for predicting dorsal pressures on the foot surface while walking

2012

In this work, artificial neural networks (ANNs) are proposed to predict the dorsal pressure over the foot surface exerted by the shoe upper while walking. A model that is based on the multilayer perceptron (MLP) is used since it can provide a single equation to model the exerted pressure for all the materials used as shoe uppers. Five different models are produced, one model for each one of the four subjects under study and an overall model for the four subjects. The inputs to the neural model include the characteristics of the material and the positions during a whole step of 14 pressure sensors placed on the foot surface. The goal is to find models with good generalization capabilities, (…

Correlation coefficientEXPRESION GRAFICA EN LA INGENIERIAGeneralizationComputer scienceShoe upperMachine learningcomputer.software_genreArtificial IntelligenceMultilayer perceptronSet (psychology)Training setArtificial neural networkArtificial neural networksbusiness.industryWork (physics)General EngineeringDorsal pressuresPressure sensorComputer Science ApplicationsData setMultilayer perceptronArtificial intelligencebusinesscomputerLENGUAJES Y SISTEMAS INFORMATICOS
researchProduct

Next-Day Bitcoin Price Forecast

2019

This study analyzes forecasts of Bitcoin price using the autoregressive integrated moving average (ARIMA) and neural network autoregression (NNAR) models. Employing the static forecast approach, we forecast next-day Bitcoin price both with and without re-estimation of the forecast model for each step. For cross-validation of forecast results, we consider two different training and test samples. In the first training-sample, NNAR performs better than ARIMA, while ARIMA outperforms NNAR in the second training-sample. Additionally, ARIMA with model re-estimation at each step outperforms NNAR in the two test-sample forecast periods. The Diebold Mariano test confirms the superiority of forecast …

Cryptocurrency050208 financeVDP::Samfunnsvitenskap: 200::Økonomi: 210::Samfunnsøkonomi: 212Computer sciencelcsh:Risk in industry. Risk management05 social sciencesARIMAPrice predictionlcsh:HD61cryptocurrencyPrice forecastVDP::Samfunnsvitenskap: 200::Økonomi: 210Autoregressive modellcsh:Financelcsh:HG1-99990502 economics and businessddc:330EconometricsAutoregressive integrated moving average050207 economicsstatic forecastartificial neural networkBitcoinJournal of Risk and Financial Management
researchProduct