Search results for "Artificial neural network"
showing 10 items of 694 documents
Deep learning model deploying on embedded skin cancer diagnostic device
2020
The number of research papers, where neural networks are applied in medical image analysis is growing. There is a proof that Convolutional Neural Networks (CNN) are able to differentiate skin cancer from nevi with greater accuracy than experienced specialists on average (sensitivity 82% and 73% accordingly).1 Team's latest research2 allows achieving even greater accuracy, by using specific narrow-band illumination. Nevertheless, the overall probability of early skin cancer detection depends on the availability of diagnostic tools. If screening tools will be available to a high number of general practices, the chance of disease detection will increase. The previous research3 shows that scala…
Using a neural network for qualitative and quantitative predictions of weld integrity in solid bonding dominated processes
2014
Solid-state bonding occurs in several manufacturing processes, as Friction Stir Welding, Porthole Die Extrusion and Roll Bonding. Proper conditions of pressure, temperature, strain and strain rate are needed in order to get effective bonding in the final component. In the paper, a neural network is set up, trained and used to predict the bonding occurrence starting from the results of specific numerical models developed for each process. The Plata-Piwnik criterion was used in order to define a quantitative parameter taking into account the effectiveness of the bonding. Excellent predictive capability of the network is obtained for each process.
One and Two Dimensional Convolutional Neural Networks for Seizure Detection Using EEG Signals
2021
Deep learning for the automated detection of epileptic seizures has received much attention during recent years. In this work, one dimensional convolutional neural network (1D-CNN) and two dimensional convolutional neural network (2D-CNN) are simultaneously used on electroencephalogram (EEG) data for seizure detection. Firstly, using sliding windows without overlap on raw EEG to obtain the definite one-dimension time EEG segments (1D-T), and continuous wavelet transform (CWT) for 1D-T signals to obtain the two-dimension time-frequency representations (2D-TF). Then, 1D-CNN and 2D-CNN model architectures are used on 1D-T and 2D-TF signals for automatic classification, respectively. Finally, t…
The role of expert evaluation for microsleep detection
2015
Abstract Recently, it has been shown by overnight driving simulation studies that microsleep density is the only known sleepiness indicator which rapidly increases within a few seconds immediately before sleepiness related crashes. This indicator is based solely on EEG and EOG and subsequent adaptive pattern recognition. Accurate microsleep recognition is very important for the performance of this sleepiness indicator. The question is whether expensive evaluations of microsleep events by a) experts are necessary or b) non-experts provide sufficient evaluations. Based on 11,114 microsleep events in case a) and 12,787 in case b) recognition accuracies were investigated utilizing (i) artificia…
Principal Component and Neural Network Analyses of Face Images: What Can Be Generalized in Gender Classification?
1998
We present an overview of the major findings of the principal component analysis (pca) approach to facial analysis. In a neural network or connectionist framework, this approach is known as the linear autoassociator approach. Faces are represented as a weighted sum of macrofeatures (eigenvectors or eigenfaces) extracted from a cross-product matrix of face images. Using gender categorization as an illustration, we analyze the robustness of this type of facial representation. We show that eigenvectors representing general categorical information can be estimated using a very small set of faces and that the information they convey is generalizable to new faces of the same population and to a l…
DAE-GP
2020
Estimation of distribution genetic programming (EDA-GP) algorithms are metaheuristics where sampling new solutions from a learned probabilistic model replaces the standard mutation and recombination operators of genetic programming (GP). This paper presents DAE-GP, a new EDA-GP which uses denoising autoencoder long short-term memory networks (DAE-LSTMs) as probabilistic model. DAE-LSTMs are artificial neural networks that first learn the properties of a parent population by mapping promising candidate solutions to a latent space and reconstructing the candidate solutions from the latent space. The trained model is then used to sample new offspring solutions. We show on a generalization of t…
A Neuro-Ethological Approach for the TSP: Changing Metaphors in Connectionist Models.
1994
Biological systems often offer solutions to difficult problems which are not only original but also efficient. Connectionist models have been inspired by neural systems and successfully applied to the formulation of algorithms for solving complex problems such as the travelling salesman problem. In this paper we extend the connectionist metaphor to include an ethological account of how problems similar to the travelling salesman problem are solved by real living systems. A model is presented in which a population of neural networks with simple sensory-motor systems evolve genetically in simulated environments which represent the problem instances to be solved. Preliminary results are discu…
Instrumental Odour Monitoring System Classification Performance Optimization by Analysis of Different Pattern-Recognition and Feature Extraction Tech…
2020
Instrumental odour monitoring systems (IOMS) are intelligent electronic sensing tools for which the primary application is the generation of odour metrics that are indicators of odour as perceived by human observers. The quality of the odour sensor signal, the mathematical treatment of the acquired data, and the validation of the correlation of the odour metric are key topics to control in order to ensure a robust and reliable measurement. The research presents and discusses the use of different pattern recognition and feature extraction techniques in the elaboration and effectiveness of the odour classification monitoring model (OCMM). The effect of the rise, intermediate, and peak period …
Emulating the Effects of Radiation-Induced Soft-Errors for the Reliability Assessment of Neural Networks
2021
International audience; Convolutional Neural Networks (CNNs) are currently one of the most widely used predictive models in machine learning. Recent studies have demonstrated that hardware faults induced by radiation fields, including cosmic rays, may significantly impact the CNN inference leading to wrong predictions. Therefore, ensuring the reliability of CNNs is crucial, especially for safety-critical systems. In the literature, several works propose reliability assessments of CNNs mainly based on statistically injected faults. This work presents a software emulator capable of injecting real faults retrieved from radiation tests. Specifically, from the device characterisation of a DRAM m…
A Curvature Based Method for Blind Mesh Visual Quality Assessment Using a General Regression Neural Network
2016
International audience; No-reference quality assessment is a challenging issue due to the non-existence of any information related to the reference and the unknown distortion type. The main goal is to design a computational method to objectively predict the human perceived quality of a distorted mesh and deal with the practical situation when the reference is not available. In this work, we design a no reference method that relies on the general regression neural network (GRNN). Our network is trained using the mean curvature which is an important perceptual feature representing the visual aspect of a 3D mesh. Relatively to the human subjective scores, the trained network successfully asses…