Search results for "AsH3"

showing 2 items of 2 documents

High resolution study of AsHD2: Ground state and the three bending fundamental bands v(3), v(4), and v(6)

2006

International audience; For the first time the infrared spectrum of the AsHD2 molecule has been measured in the region of the bending fundamental bands v(3), v(4), and v(6) on a Fourier transform spectrometer with a resolution of 0.0024 cm(-1) and analyzed. More than 5500 transitions with J(max) = 26 have been assigned and used both to obtain "ground state combination differences" and for the determination of upper state ro-vibrational energies of the triad (001000), (000100), and (000001). Rotational parameters including centrifugal distortion coefficients up to octic terms of the ground vibrational state were calculated by fitting more than 500 "ground state combination differences" with …

InfraredFourier transform spectrometersHigh resolution7. Clean energy01 natural sciencessymbols.namesakeNuclear magnetic resonance0103 physical sciencesMoleculespectroscopic parametersPhysical and Theoretical Chemistry010303 astronomy & astrophysicsSpectroscopyPhysics[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]010304 chemical physicsAtomic and Molecular Physics and Opticsinfrared spectrumisotopic species[ PHYS.PHYS.PHYS-AO-PH ] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]symbolsAsH3Atomic physicsGround stateHamiltonian (quantum mechanics)fundamental bands
researchProduct

On the study of the vibrational energy levels of Arsine molecule

2008

Abstract We compare two formalisms applied to the vibrational modes of the molecule of AsH 3 of C 3 v molecular symmetry group. Indeed, the close stretching modes of this molecule may be considered as those of a three-dimensional oscillator whereas the bending modes may be considered either as a one-dimensional oscillator of symmetry A 1 and a two-dimensional oscillator of symmetry E or as an approximate three-dimensional oscillator. So, we have applied the U ( p  + 1) formalism to the both stretching and bending modes and introduced coupling terms acting on an appropriate coupled vibrational basis through a local mode formalism. We have then compared the result of our fitting with those ob…

Unitary group approachVibrational energy[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]02 engineering and technology01 natural sciencesHot bandchemistry.chemical_compoundArsine[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Normal mode0103 physical sciencesMolecular symmetryMoleculePhysical and Theoretical Chemistry010306 general physicsSpectroscopyPhysicsVibrational excitationsLocal modeNormal mode021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsVibrationchemistryMolecular vibrationAsH3Atomic physics0210 nano-technology
researchProduct