Search results for "Assays"

showing 10 items of 546 documents

Recombinant laccase from Pediococcus acidilactici CECT 5930 with ability to degrade tyramine

2017

Biogenic amines degradation by bacterial laccases is little known, so we have cloned and heterologously expressed, in E. coli, a new laccase from Pediococcus acidilactici CECT 5930 (Lpa5930), a lactic acid bacterium commonly found in foods able to degrade tyramine. The recombinant enzyme has been characterized by physical and biochemical assays. Here we report the optimization of expression and purification procedures of this laccase. DNA encoding sequence of laccase from P. acidilactici was amplified by PCR and cloned into the expression plasmid pET28a for induction by isopropyl-β-D-thiogalactoipyranoside. Protein expression was performed in E. coli BL21(DE3) harboring pGro7 plasmid expres…

0106 biological sciences0301 basic medicineArabinoseMolecular biologylcsh:MedicineLaccasesBiochemistryBiotecnologia01 natural sciencesSubstrate Specificitylaw.inventionDatabase and Informatics Methodschemistry.chemical_compoundlawRecombinant Protein PurificationCloning MolecularAmineslcsh:Sciencechemistry.chemical_classificationMultidisciplinaryABTSbiologyOrganic CompoundsTemperatureHydrogen-Ion ConcentrationTyramineRecombinant ProteinsEnzymesChemistryRecombination-Based AssayBiochemistryPhysical SciencesRecombinant DNAElectrophoresis Polyacrylamide GelOxidation-ReductionSequence AnalysisResearch ArticleProtein PurificationBioinformaticsTyramineLibrary ScreeningDNA constructionResearch and Analysis Methods03 medical and health sciencesBacterial ProteinsSequence Motif Analysis010608 biotechnologyAmino Acid SequenceBenzothiazolesPediococcus acidilacticiLaccaseMolecular Biology Assays and Analysis TechniquesBase SequenceMolecular massLaccaseOrganic Chemistrylcsh:RChemical CompoundsBiology and Life SciencesProteinsPediococcus acidilacticiSequence Analysis DNAbiology.organism_classificationMolecular biology techniques030104 developmental biologyEnzymechemistryPlasmid ConstructionEnzymologySpectrophotometry Ultravioletlcsh:QSulfonic AcidsEnzimsProteïnesPurification TechniquesPLOS ONE
researchProduct

Comparative Mitogenomics of Leeches (Annelida: Clitellata): Genome Conservation and Placobdella-Specific trnD Gene Duplication.

2015

Mitochondrial DNA sequences, often in combination with nuclear markers and morphological data, are frequently used to unravel the phylogenetic relationships, population dynamics and biogeographic histories of a plethora of organisms. The information provided by examining complete mitochondrial genomes also enables investigation of other evolutionary events such as gene rearrangements, gene duplication and gene loss. Despite efforts to generate information to represent most of the currently recognized groups, some taxa are underrepresented in mitochondrial genomic databases. One such group is leeches (Annelida: Hirudinea: Clitellata). Herein, we expand our knowledge concerning leech mitochon…

0106 biological sciences0301 basic medicineClitellatalcsh:MedicineBiochemistry01 natural sciencesGenomeDatabase and Informatics MethodsRNA TransferGene DuplicationGene OrderInvertebrate GenomicsGene duplicationAnnelidslcsh:SciencePhylogenyEnergy-Producing OrganellesData ManagementGeneticseducation.field_of_studyMultidisciplinaryPhylogenetic treePhylogenetic AnalysisGenomicsGenomic DatabasesMitochondriaNucleic acidsPhylogeneticsGenes MitochondrialPlacobdella parasiticaCellular Structures and OrganellesTransfer RNAResearch ArticleComputer and Information SciencesMitochondrial DNAPopulationBioenergeticsBiologyResearch and Analysis Methods010603 evolutionary biologyEvolution MolecularOpen Reading Frames03 medical and health sciencesPhylogeneticsLeechesGeneticsAnimalsEvolutionary Systematics14. Life underwaterCodonMolecular Biology TechniquesNon-coding RNAeducationMolecular BiologyTaxonomyMolecular Biology Assays and Analysis TechniquesEvolutionary Biologylcsh:ROrganismsBiology and Life SciencesComputational BiologyCell BiologyGenome Analysisbiology.organism_classificationInvertebratesBiological Databases030104 developmental biologyAnimal GenomicsGenome MitochondrialRNAlcsh:QPLoS ONE
researchProduct

Response to formal comment on Myhrvold (2016) submitted by Griebeler and Werner (2017)

2018

In his 2016 paper, Myhrvold criticized ours from 2014 on maximum growth rates (Gmax, maximum gain in body mass observed within a time unit throughout an individual’s ontogeny) and thermoregulation strategies (ectothermy, endothermy) of 17 dinosaurs. In our paper, we showed that Gmax values of similar-sized extant ectothermic and endothermic vertebrates overlap. This strongly questions a correct assignment of a thermoregulation strategy to a dinosaur only based on its Gmax and (adult) body mass (M). Contrary, Gmax separated similar-sized extant reptiles and birds (Sauropsida) and Gmax values of our studied dinosaurs were similar to those seen in extant similar-sized (if necessary scaled-up) …

0106 biological sciences0301 basic medicineMetabolic AnalysisPhysiologylcsh:MedicineAnimal Phylogenetics01 natural sciencesDinosaursBody TemperatureExtant taxonOrnithologyMaximum gainMedicine and Health SciencesGrowth rateSauropsidalcsh:ScienceArchosauriaData ManagementMammalsMultidisciplinarybiologyVertebrateEukaryotaPrehistoric AnimalsThermoregulationPhylogeneticsBioassays and Physiological AnalysisPhysiological ParametersEctothermVertebratesRegression AnalysisComputer and Information SciencesVertebrate PaleontologyZoologyResearch and Analysis Methods010603 evolutionary biologyFormal CommentBirds03 medical and health sciencesbiology.animalBasal Metabolic Rate MeasurementAnimalsAnimal PhysiologyEvolutionary SystematicsPaleozoologyTaxonomyEvolutionary Biologylcsh:ROrganismsBiology and Life SciencesPaleontologyReptilesbiology.organism_classificationBird Physiology030104 developmental biologyAmniotesEarth Scienceslcsh:QAllometryPaleobiologyZoologyPLoS ONE
researchProduct

Dinosaur Metabolism and the Allometry of Maximum Growth Rate

2016

In his 2016 paper, Myhrvold criticized ours from 2014 on maximum growth rates (Gmax, maximum gain in body mass observed within a time unit throughout an individual’s ontogeny) and thermoregulation strategies (ectothermy, endothermy) of 17 dinosaurs. In our paper, we showed that Gmax values of similar-sized extant ectothermic and endothermic vertebrates overlap. This strongly questions a correct assignment of a thermoregulation strategy to a dinosaur only based on its Gmax and (adult) body mass (M). Contrary, Gmax separated similar-sized extant reptiles and birds (Sauropsida) and Gmax values of our studied dinosaurs were similar to those seen in extant similar-sized (if necessary scaled-up) …

0106 biological sciences0301 basic medicineMetabolic stateMetabolic AnalysisPhysiologylcsh:MedicineAnimal Phylogenetics01 natural sciencesBody TemperatureDinosaursMathematical and Statistical TechniquesExtant taxonMedicine and Health SciencesBody SizeGrowth ratelcsh:Sciencemedia_commonArchosauriaData ManagementMammalsMultidisciplinaryEcologyFossilsEukaryotaRegression analysisPrehistoric AnimalshumanitiesCurve FittingPhylogeneticsBioassays and Physiological AnalysisPhysiological ParametersEctothermPhysical SciencesVertebratesRegression AnalysisStatistics (Mathematics)Research ArticleComputer and Information Sciencesmedia_common.quotation_subjectVertebrate PaleontologyBiologyResearch and Analysis Methods010603 evolutionary biologyMarsupialsFormal CommentBirds03 medical and health sciencesBasal Metabolic Rate MeasurementAnimalsEvolutionary SystematicsStatistical MethodsPaleozoologyTaxonomyEvolutionary BiologyVariableslcsh:ROrganismsReptilesBiology and Life SciencesPaleontology030104 developmental biologyEvolutionary biologyBasal metabolic rateAmniotesEarth Scienceslcsh:QAllometryPaleobiologyEnergy MetabolismZoologyMathematical FunctionsMathematicsPLoS ONE
researchProduct

Oxygen Availability during Growth Modulates the Phytochemical Profile and the Chemo-Protective Properties of Spinach Juice.

2018

Fruits and vegetables are a good source of potentially biologically active compounds. Their regular consumption in the human diet can help reduce the risk of developing chronic diseases such as cardiovascular diseases and cancer. Plants produce additional chemical substances when subject to abiotic stress or infected by microorganisms. The phytochemical profile of spinach leaves (Spinacia oleracea L.), which is a vegetable with widely recognized health-promoting activity, has been affected by applying root hypoxic and re-oxygenation stress during plant growth. Leaf juice at different sampling times has been subject to liquid chromatography mass spectrometry (LC-MSn) analysis and tested on t…

0106 biological sciences0301 basic medicineSpinaciaAntioxidantHT29 cell lineCell Survivalmedicine.medical_treatmentLiquid Chromatography-Mass Spectrometry<i>Spinacia oleracea</i> L.lcsh:QR1-502antioxidant activitySpinacia oleracea L.Anti-proliferative activity; Antioxidant activity; Comet Assay; HT29 cell line; Liquid Chromatography-Mass Spectrometry; Spinacia oleracea L;medicine.disease_cause01 natural sciencesBiochemistrylcsh:MicrobiologyAntioxidantsMass SpectrometryArticle03 medical and health sciencesSpinacia oleraceamedicineHumansFood scienceMolecular BiologyCell ProliferationbiologyAbiotic stressChemistryChemistry PhysicalPlant Extractsfood and beveragesBiological activitybiology.organism_classificationAntineoplastic Agents PhytogenicComet assayFruit and Vegetable JuicesOxygen030104 developmental biologyPhytochemicalSpinachanti-proliferative activityComet AssayDrug Screening Assays AntitumorHT29 CellsOxidative stress010606 plant biology & botanyChromatography LiquidBiomolecules
researchProduct

Advanced methods of plant disease detection. A review

2014

International audience; Plant diseases are responsible for major economic losses in the agricultural industry worldwide. Monitoring plant health and detecting pathogen early are essential to reduce disease spread and facilitate effective management practices. DNA-based and serological methods now provide essential tools for accurate plant disease diagnosis, in addition to the traditional visual scouting for symptoms. Although DNA-based and serological methods have revolutionized plant disease detection, they are not very reliable at asymptomatic stage, especially in case of pathogen with systemic diffusion. They need at least 1–2 days for sample harvest, processing, and analysis. Here, we d…

0106 biological sciencesEnvironmental Engineering[SDV]Life Sciences [q-bio]DiseaseBiology01 natural sciences03 medical and health sciencesCommercial kitsVolatile organic compoundsSpectroscopyPlant disease030304 developmental biology2. Zero hunger0303 health sciencesbusiness.industryDNA-based methods Immunological assays Spectroscopy Biophotonics Plant disease Remote sensing Volatile organic compounds Commercial kitsEffective managementExtremely HelpfulRemote sensingPlant diseaseCrop protectionBiotechnologyRisk analysis (engineering)DNA-based methodsImmunological assaysBiophotonicsbusinessAgronomy and Crop Science010606 plant biology & botany
researchProduct

2,3-Dihydrobenzofuran privileged structures as new bioinspired lead compounds for the design of mPGES-1 inhibitors

2016

International audience; 2,3-Dihydrobenzofurans are proposed as privileged structures and used as chemical platform to design small compound libraries. By combining molecular docking calculations and experimental verification of biochemical interference, we selected some potential inhibitors of microsomal prostaglandin E2 synthase (mPGES)-1. Starting from low affinity natural product 1, by our combined approach we identified the compounds 19 and 20 with biological activity in the low micromolar range. Our data suggest that the 2,3-dihydrobenzofuran derivatives might be suitable bioinspired lead compounds for development of new generation mPGES-1 inhibitors with increased affinity.

0301 basic medicine300323-Dihydrobenzofuran privileged structure; Cancer; Inflammation; Molecular docking; mPGES-1 inhibitors; Biochemistry; Clinical Biochemistry; Molecular Biology; Molecular Medicine; Organic Chemistry; Drug Discovery3003 Pharmaceutical Science; 3003Amino Acid MotifsClinical BiochemistryGene ExpressionPharmaceutical Science01 natural sciencesClinical biochemistryBiochemistry[ CHIM ] Chemical SciencesProtein Structure Secondary[ SDV.CAN ] Life Sciences [q-bio]/Cancerchemistry.chemical_compoundLow affinityDrug DiscoveryEnzyme Inhibitors23-Dihydrobenzofuran privileged structure; Molecular docking; mPGES-1 inhibitors; Cancer; InflammationProstaglandin-E SynthasesCancerAnti-Inflammatory Agents Non-SteroidalBiological activityProto-Oncogene Proteins c-metIntramolecular OxidoreductasesMolecular Docking SimulationMolecular dockingMolecular Medicinelipids (amino acids peptides and proteins)Cell SurvivalStereochemistryMolecular Sequence Data2Antineoplastic Agents[SDV.CAN]Life Sciences [q-bio]/Cancer3-Dihydrobenzofuran privileged structureInhibitory Concentration 50Structure-Activity Relationship03 medical and health sciencesCell Line TumorMicrosomesHumans[CHIM]Chemical SciencesMolecular BiologyBenzofuransInflammationNatural product010405 organic chemistryDrug Discovery3003 Pharmaceutical ScienceOrganic ChemistryEpithelial CellsmPGES-1 inhibitorsCombinatorial chemistryCombined approach0104 chemical sciences030104 developmental biologychemistryDrug DesignDrug Screening Assays Antitumor
researchProduct

An overview on the recent developments of 1,2,4-triazine derivatives as anticancer compounds

2017

The synthesis, the antitumor activity, the SAR and, whenever described, the possible mode of action of 1,2,4-triazine derivatives, their N-oxides, N,. N'-dioxides as well as the benzo- and hetero-fused systems are reported. Herein are treated derivatives disclosed to literature from the beginning of this century up to 2016. Among the three possible triazine isomers, 1,2,4-triazines are the most studied ones and many derivatives having remarkable antitumor activity have been reported in the literature and also patented reaching advanced phases of clinical trials.

0301 basic medicine4-benzotriazine124-triazineAntineoplastic AgentsChemistry Techniques SyntheticAntiproliferative activity01 natural sciences03 medical and health scienceschemistry.chemical_compoundNeoplasmsDrug DiscoveryOrganic chemistryAnimalsHumans124-triazineMode of action124-benzotriazineTriazineAntitumor activityPharmacology010405 organic chemistryChemistryTriazinesNitrogen heterocyclesDrug Discovery3003 Pharmaceutical Science1; 2; 4-benzotriazine; 1; 2; 4-triazine; Antiproliferative activity; Antitumor activity; Nitrogen heterocycles; Pharmacology; Drug Discovery3003 Pharmaceutical Science; Organic ChemistryOrganic ChemistryGeneral MedicineCombinatorial chemistrySettore CHIM/08 - Chimica Farmaceutica0104 chemical sciences030104 developmental biologyNitrogen heterocycleDrug Screening Assays AntitumorAntitumor activity
researchProduct

Retinoic Acid affects Lung Adenocarcinoma growth by inducing differentiation via GATA6 activation and EGFR and Wnt inhibition

2016

AbstractA fundamental task in cancer research aims at the identification of new pharmacological therapies that can affect tumor growth. Differentiation therapy might exploit this function not only for hematological diseases, such as acute promyelocytic leukemia (APML) but also for epithelial tumors, including lung cancer. Here we show that Retinoic Acid (RA) arrests in vitro and in vivo the growth of Tyrosine Kinase Inhibitors (TKI) resistant Non Small Cell Lung Cancer (NSCLC). In particular, we found that RA induces G0/G1 cell cycle arrest in TKI resistant NSCLC cells and activates terminal differentiation programs by modulating the expression of GATA6, a key transcription factor involved …

0301 basic medicineAcute promyelocytic leukemiaScienceEGFRRetinoic acidMice NudeTretinoinBiologyArticle03 medical and health scienceschemistry.chemical_compoundDifferentiation therapySettore BIO/13 - Biologia ApplicataCarcinoma Non-Small-Cell LungCell Line TumorGATA6 Transcription FactormedicineRetinoic acidAnimalsHumansLung cancerProtein Kinase InhibitorsWnt Signaling PathwayTranscription factorCell ProliferationMultidisciplinaryQRWnt signaling pathwayCell Differentiationmedicine.diseaseG1 Phase Cell Cycle CheckpointsXenograft Model Antitumor Assaysrespiratory tract diseasesErbB Receptorslung cancerAnimals; Carcinoma Non-Small-Cell Lung; Cell Differentiation; Cell Line Tumor; Cell Proliferation; Drug Resistance Neoplasm; ErbB Receptors; G1 Phase Cell Cycle Checkpoints; GATA6 Transcription Factor; Humans; Mice Nude; Protein Kinase Inhibitors; Signal Transduction; Tretinoin; Wnt Signaling Pathway; Xenograft Model Antitumor Assays030104 developmental biologychemistryDrug Resistance NeoplasmImmunologyCancer researchMedicineAdenocarcinomaEngineering sciences. TechnologyTyrosine kinaseSignal Transduction
researchProduct

Novel iodoacetamido benzoheterocyclic derivatives with potent antileukemic activity are inhibitors of STAT5 phosphorylation

2016

Signal Transducer and Activator of Transcription 5 (STAT5) protein, a component of the STAT family of signaling proteins, is considered to be an attractive therapeutic target because of its involvement in the progression of acute myeloid leukemia. In an effort to discover potent molecules able to inhibit the phosphorylation-activation of STAT5, twenty-two compounds were synthesized and evaluated on the basis of our knowledge of the activity of 2-(3’,4’,5’-trimethoxybenzoyl)-3-iodoacetamido-6-methoxy benzo[b]furan derivative 1 as a potent STAT5 inhibitor. Most of these molecules, structurally related to compound 1, were characterized by the presence of a common 3’,4’,5’-trimethoxybenzoyl moi…

0301 basic medicineApoptosisAntineoplastic Agentchemistry.chemical_compoundBenzophenone0302 clinical medicinehemic and lymphatic diseasesFuranDrug DiscoverySTAT5 Transcription FactorTumor Cells CulturedThiopheneMoietyPhosphorylationSTAT5Molecular StructurebiologyChemistryBiological activityGeneral MedicineApoptosis; BCR/ABL expressing leukemia; In vitro antiproliferative activity; STAT5 inhibitors; Structure-activity relationship; Drug Discovery3003 Pharmaceutical Science; Organic Chemistry; PharmacologyLeukemia Myeloid Acute030220 oncology & carcinogenesisBCR/ABL expressing leukemiaApoptosis; BCR/ABL expressing leukemia; In vitro antiproliferative activity; STAT5 inhibitors; Structure-activity relationship; Antineoplastic Agents; Apoptosis; Benzofurans; Benzophenones; Cell Proliferation; Dose-Response Relationship Drug; Drug Screening Assays Antitumor; Humans; K562 Cells; Leukemia Myeloid Acute; Molecular Structure; Phosphorylation; STAT5 Transcription Factor; Structure-Activity Relationship; Tumor Cells Cultured; Drug Discovery3003 Pharmaceutical Science; Organic Chemistry; PharmacologyHumanStereochemistryAntineoplastic AgentsArticleNOBenzophenones03 medical and health sciencesK562 CellHumansStructure–activity relationshipBenzofuransCell ProliferationPharmacologyIndole testDose-Response Relationship DrugIn vitro antiproliferative activitySTAT5 inhibitorsDrug Discovery3003 Pharmaceutical ScienceOrganic ChemistryApoptosiSTAT5 inhibitorStructure-activity relationshipIn vitro030104 developmental biologybiology.proteinBenzofuranDrug Screening Assays AntitumorK562 Cells
researchProduct