Search results for "Atmospheric chemistry"
showing 10 items of 93 documents
2010
Abstract. As a major source region of the hydroxyl radical OH, the Tropics largely control the oxidation capacity of the atmosphere on a global scale. However, emissions of hydrocarbons from the tropical rainforest that react rapidly with OH can potentially deplete the amount of OH and thereby reduce the oxidation capacity. The airborne GABRIEL field campaign in equatorial South America (Suriname) in October 2005 investigated the influence of the tropical rainforest on the HOx budget (HOx = OH + HO2). The first observations of OH and HO2 over a tropical rainforest are compared to steady state concentrations calculated with the atmospheric chemistry box model MECCA. The important precursors …
Modelling the optical properties of fresh biomass burning aerosol produced in a smoke chamber: results from the EFEU campaign
2007
A better characterisation of the optical properties of biomass burning aerosol as a function of the burning conditions is required in order to quantify their effects on climate and atmospheric chemistry. Controlled laboratory combustion experiments with different fuel types were carried out at the combustion facility of the Max Planck Institute for Chemistry (Mainz, Germany) as part of the "Impact of Vegetation Fires on the Composition and Circulation of the Atmosphere" (EFEU) project. The combustion conditions were monitored with concomitant CO<sub>2</sub> and CO measurements. The mass scattering efficiencies of 8.9&plusmn;0.2 m<sup>2</sup> g<sup>…
Supplementary data for the article "Predicting liquid-liquid phase separation in ternary organic-organic-water mixtures"
2023
Artikkelin "Predicting liquid-liquid phase separation in ternary organic-organic-water mixtures" lisäaineisto. The data set contains the supplementary data of the article "Predicting liquid-liquid phase separation in ternary organic-organic-water mixtures" published in Phys. Chem. Chem. Phys. The data includes cosmo-files used in the COSMOtherm calculations of the article.
Development of a coupled diffusion denuder system combined with gas chromatography/mass spectrometry for the separation and quantification of molecul…
2009
This study concerns the development of a coupled diffusion denuder system capable of separating and quantifying gaseous molecular iodine (I(2)) and two other highly reactive iodine species, ICl and HOI, which are collectively named activated iodine compounds (AIC). Both I(2) and AIC are key species in the atmospheric chemistry of iodine. 1,3,5-Trimethoxybenzene (1,3,5-TMB)- and alpha-cyclodextrin/(129)I(-) (alpha-CD/(129)I(-))-coated denuders proved to be suitable for the collection of gaseous AIC and I(2), respectively. The experimental collection efficiencies for AIC (tested as ICl) and I(2) agreed well with the theoretical values for gas flow rates in the range between 300 and 1800 mL mi…
A study of the atmospherically important reactions between dimethyl selenide (DMSe) and molecular halogens (X2 = Cl2, Br2, and I2) with ab initio cal…
2012
The atmospherically relevant reactions between dimethyl selenide (DMSe) and the molecular halogens (X(2) = Cl(2), Br(2), and I(2)) have been studied with ab initio calculations at the MP2/aug-cc-pVDZ level of theory. Geometry optimization calculations showed that the reactions proceed from the reagents to the products (CH(3)SeCH(2)X + HX) via three minima, a van der Waals adduct (DMSe:X(2)), a covalently bound intermediate (DMSeX(2)), and a product-like complex (CH(3)SeCH(2)X:HX). The computed potential energy surfaces are used to predict what molecular species are likely to be observed in spectroscopic experiments such as gas-phase photoelectron spectroscopy and infrared matrix isolation s…
The role of melt composition on aqueous fluid vs. silicate melt partitioning of bromine in magmas
2018
International audience; Volcanogenic halogens, in particular bromine, potentially play an important role in the ozone depletion of the atmosphere. Understanding bromine behaviour in magmas is therefore crucial to properly evaluate the contribution of volcanic eruptions to atmospheric chemistry and their environmental impact. To date, bromine partitioning between silicate melts and the gas phase is very poorly constrained, with the only relevant experimental studies limited to investigation of synthetic melt with silicic compositions. In this study, fluid/melt partitioning experiments were performed using natural silicate glasses with mafic, intermediate and silicic compositions. For each co…
Photochemistry of oxidized Hg(I) and Hg(II) species suggests missing mercury oxidation in the troposphere.
2020
8 pags., 5 figs., 2 tabs.
Boosting Long-Term Stability of Pure Formamidinium Perovskite Solar Cells by Ambient Air Additive Assisted Fabrication
2021
Due to the high industrial interest for perovskite-based photovoltaic devices, there is an urgent need to fabricate them under ambient atmosphere, not limited to low relative humidity (RH) conditions. The formamidinium lead iodide (FAPI) perovskite α-black phase is not stable at room temperature and is challenging to stabilize in an ambient environment. In this work, we show that pure FAPI perovskite solar cells (PSCs) have a dramatic increase of device long-term stability when prepared under ambient air compared to FAPI PSCs made under nitrogen, both fabricated with N-methylpyrrolidone (NMP). The T80 parameter, the time in which the efficiency drops to 80% of the initial value, increases f…
The 1-way on-line coupled atmospheric chemistry model system MECO(n) – Part 2: On-line coupling with the Multi-Model-Driver (MMD)
2012
A new, highly flexible model system for the seamless dynamical down-scaling of meteorological and chemical processes from the global to the meso-γ scale is presented. A global model and a cascade of an arbitrary number of limited-area model instances run concurrently in the same parallel environment, in which the coarser grained instances provide the boundary data for the finer grained instances. Thus, disk-space intensive and time consuming intermediate and pre-processing steps are entirely avoided and the time interpolation errors of common off-line nesting approaches are minimised. More specifically, the regional model COSMO of the German Weather Service (DWD) is nested on-line into the …
Evaluation of the global aerosol model EMAC-MADE3 in the uncoupled version - monthly data
2018
Project: EMAC-MADE3 uncoupled - Recently, the aerosol microphysics submodel MADE3 was introduced as a successor to MADE and MADE-in. It includes nine aerosol species and nine lognormal modes to represent aerosol particles of three different mixing states throughout the aeroso size spectrum. Here we describe the implementation of the most recent version of MADE3 into the atmospheric chemistry general circulation model EMAC, including a detailed evaluation of a ten-year aerosol simulation with MADE3 as part of EMAC. Summary: Simulation with most recent version of MADE3 into the atmospheric chemistry general circulation model EMAC, including a detailed evaluation of a ten-year aerosol simulati…