6533b7d5fe1ef96bd12646ac
RESEARCH PRODUCT
Boosting Long-Term Stability of Pure Formamidinium Perovskite Solar Cells by Ambient Air Additive Assisted Fabrication
Rafael SánchezEva Maria BareaMarie KreĉmarováAndrés F. Gualdrón-reyesSofia MasiJuan F. Sánchez-royoK. M. Muhammed SalimIván Mora-serósubject
atmospheric chemistryMaterials scienceFabricationLetterperovskitesEnergy Engineering and Power Technology02 engineering and technology010402 general chemistry7. Clean energy01 natural sciencesPhase (matter)Materials ChemistryRelative humidityPerovskite (structure)Renewable Energy Sustainability and the EnvironmentPhotovoltaic systemEnergy conversion efficiencystability021001 nanoscience & nanotechnology0104 chemical sciencesFuel TechnologyFormamidiniumChemical engineeringChemistry (miscellaneous)Quantum dotsolar cellsadditives0210 nano-technologydescription
Due to the high industrial interest for perovskite-based photovoltaic devices, there is an urgent need to fabricate them under ambient atmosphere, not limited to low relative humidity (RH) conditions. The formamidinium lead iodide (FAPI) perovskite α-black phase is not stable at room temperature and is challenging to stabilize in an ambient environment. In this work, we show that pure FAPI perovskite solar cells (PSCs) have a dramatic increase of device long-term stability when prepared under ambient air compared to FAPI PSCs made under nitrogen, both fabricated with N-methylpyrrolidone (NMP). The T80 parameter, the time in which the efficiency drops to 80% of the initial value, increases from 21 (in N2) to 112 days (in ambient) to 145 days if PbS quantum dots (QDs) are introduced as additives in air-prepared FAPI PSCs. Furthermore, by adding methylammonium chloride (MACl) the power conversion efficiency (PCE) reaches 19.4% and devices maintain 100% of the original performance for at least 53 days. The presence of Pb–O bonds only in the FAPI films prepared in ambient conditions blocks the propagation of α- to δ-FAPI phase conversion. Thus, these results open the way to a new strategy for the stabilization in ambient air toward perovskite solar cells commercialization. Funding for open access charge: CRUE-Universitat Jaume I
year | journal | country | edition | language |
---|---|---|---|---|
2021-09-13 | ACS Energy Letters |