0000000000256325

AUTHOR

Marie Kreĉmarová

0000-0002-5401-5705

showing 4 related works from this author

Boosting Long-Term Stability of Pure Formamidinium Perovskite Solar Cells by Ambient Air Additive Assisted Fabrication

2021

Due to the high industrial interest for perovskite-based photovoltaic devices, there is an urgent need to fabricate them under ambient atmosphere, not limited to low relative humidity (RH) conditions. The formamidinium lead iodide (FAPI) perovskite α-black phase is not stable at room temperature and is challenging to stabilize in an ambient environment. In this work, we show that pure FAPI perovskite solar cells (PSCs) have a dramatic increase of device long-term stability when prepared under ambient air compared to FAPI PSCs made under nitrogen, both fabricated with N-methylpyrrolidone (NMP). The T80 parameter, the time in which the efficiency drops to 80% of the initial value, increases f…

atmospheric chemistryMaterials scienceFabricationLetterperovskitesEnergy Engineering and Power Technology02 engineering and technology010402 general chemistry7. Clean energy01 natural sciencesPhase (matter)Materials ChemistryRelative humidityPerovskite (structure)Renewable Energy Sustainability and the EnvironmentPhotovoltaic systemEnergy conversion efficiencystability021001 nanoscience & nanotechnology0104 chemical sciencesFuel TechnologyFormamidiniumChemical engineeringChemistry (miscellaneous)Quantum dotsolar cellsadditives0210 nano-technologyACS Energy Letters
researchProduct

Optical Contrast and Raman Spectroscopy Techniques Applied to Few-Layer 2D Hexagonal Boron Nitride

2019

The successful integration of few-layer thick hexagonal boron nitride (hBN) into devices based on two-dimensional materials requires fast and non-destructive techniques to quantify their thickness. Optical contrast methods and Raman spectroscopy have been widely used to estimate the thickness of two-dimensional semiconductors and semi-metals. However, they have so far not been applied to two-dimensional insulators. In this work, we demonstrate the ability of optical contrast techniques to estimate the thickness of few-layer hBN on SiO2/Si substrates, which was also measured by atomic force microscopy. Optical contrast of hBN on SiO2/Si substrates exhibits a linear trend with the number of h…

Materials sciencePhononGeneral Chemical Engineering02 engineering and technologySubstrate (electronics)010402 general chemistry01 natural sciencesArticlelcsh:ChemistryCondensed Matter::Materials Sciencesymbols.namesakeAb initio quantum chemistry methodsMonolayerGeneral Materials Scienceoptical contrasttwo-dimensional materialsSpectroscopybusiness.industry021001 nanoscience & nanotechnologyHexagonal boron nitride0104 chemical sciencesSemiconductorlcsh:QD1-999Raman spectroscopysymbolsOptoelectronics0210 nano-technologyRaman spectroscopybusinessLayer (electronics)Nanomaterials
researchProduct

Improving Long Term Stability of Pure Formamidinium Perovskite Solar Cells by Ambient Air Additive Assisted Fabrication

2021

FormamidiniumMaterials scienceFabricationChemical engineeringTerm (time)Perovskite (structure)Ambient airProceedings of the nanoGe Fall Meeting 2021
researchProduct

Extrinsic Effects on the Optical Properties of Surface Color Defects Generated in Hexagonal Boron Nitride Nanosheets

2021

Hexagonal boron nitride (hBN) is a wide-band gap van der Waals material able to host light-emitting centers behaving as single photon sources. Here, we report the generation of color defects in hBN nanosheets dispersed on different kinds of substrates by thermal treatment processes. The optical properties of these defects have been studied using microspectroscopy techniques and far-field simulations of their light emission. Using these techniques, we have found that subsequent ozone treatments of the deposited hBN nanosheets improve the optical emission properties of created defects, as revealed by their zero-phonon linewidth narrowing and reduction of background emission. Microlocalized co…

QuenchingMaterials sciencePhotoluminescencecolor defectsbusiness.industryThermal treatmentSubstrate (electronics)Dielectric2D materialshexagonal boron nitride; 2D materials; color defects; photoluminescence;interfacessymbols.namesakesymbolsOptoelectronicsphotoluminescenceGeneral Materials ScienceLight emissionhexagonal boron nitridevan der Waals forcePhotonicsbusinessResearch Article
researchProduct