Search results for "Atomi"
showing 10 items of 28717 documents
Calculation of electronic g-tensors using coupled cluster theory.
2009
A scheme for the calculation of the electronic g-tensor at the coupled cluster (CC) level is presented. The reported implementation employs an effective one-electron spin-orbit operator, allows the inclusion of arbitrary excitations in the cluster operator, and offers various options concerning the treatment of orbital relaxation and choice of reference determinants. In addition, the use of gauge-including atomic orbitals (GIAOs) is possible to overcome the gauge origin problem. Benchmark calculations for the NH ((3)Sigma(-)) radical reveal the importance of electron correlation effects for the accurate prediction of the g-shift as well as the slow basis set convergence of such calculations…
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for 20 …
2017
Benchmark scalar-relativistic coupled-cluster calculations for dissociation energies of the 20 diatomic molecules containing 3d transition metals in the 3dMLBE20 database ( J. Chem. Theory Comput. 2015 , 11 , 2036 ) are reported. Electron correlation and basis set effects are systematically studied. The agreement between theory and experiment is in general satisfactory. For a subset of 16 molecules, the standard deviation between computational and experimental values is 9 kJ/mol with the maximum deviation being 15 kJ/mol. The discrepancies between theory and experiment remain substantial (more than 20 kJ/mol) for VH, CrH, CoH, and FeH. To explore the source of the latter discrepancies, the …
Steering the excited state dynamics of a photoactive yellow protein chromophore analogue with external electric fields
2014
Abstract The first excited state of the Photoactive Yellow Protein chromophore exhibits a strong charge transfer character and the dipole moments of the excited and ground states differ significantly. Furthermore, the excited state charge distribution changes during the isomerization of this chromophore. These observations suggest that external electric fields can be used to control photo-isomerization, providing a new concept for developing photochromic devices, such as e-paper or optical memory. To test this idea, we performed excited state dynamics simulations and static calculations of a PYP chromophore analogue (pCK − ) in an external electric field. By adjusting direction and strength…
Enhanced alignment and orientation of polar molecules by vibrational resonant adiabatic passage
2007
The authors show that polar molecules can be adiabatically aligned and oriented by laser pulses more efficiently when the laser frequencies are vibrationally resonant. The aligned molecules are found in a superposition of vibrational pendular states, each associated with the alignment of the rotor in one vibrational state. The authors construct the dressed potential associated with this mechanism. Values of detunings and field amplitudes are given to optimize the degree of alignment and orientation for the CO molecule.
Quantum Dynamics of the 17O + 32O2 Collision Process
2016
We report full quantum integral and differential cross sections and rate constants for the 17O + 32O2 reactive process. This constitutes the first quantum scattering study of the 17O16O16O system. We emphasize the comparison with the 18O + 32O2 collision in close connection to the mass-independent fractionation (hereafter referred to as MIF) puzzle for ozone in atmospheric chemistry. We find similar general trends in the cross sections and rate constants for both rare isotopes, but we note some singular behaviors peculiar to the use of 17O isotope, particularly at the lowest collision energies.
Pressure‐induced widths and shifts for the ν3 band of methane
1994
International audience; Widths and shifts of methane lines perturbed by nitrogen are calculated using a complex-valued implementation of Robert-Bonamy (RB) theory. The static intermolecular potential is described as a sum of electrostatic forces and Lennard-Jones (6-12) atom-atom terms, using literature values for all physical parameters. Vibrational dependence of the isotropic potential is obtained from the polarizability of methane assuming a dispersion interaction. The repulsive part of the Lennard-Jones accounts for the greatest part of widths, while dispersion interactions are largely responsible for shifts. Although the average error between calculated and observed linewidths (up to J…
Ab initio determination of the ionization potentials of water clusters (H2O)n (n = 2-6).
2012
High-level quantum-chemical ab initio coupled-cluster and multiconfigurational perturbation methods have been used to compute the vertical and adiabatic ionization potentials of several water clusters: dimer, trimer, tetramer, pentamer, hexamer book, hexamer ring, hexamer cage, and hexamer prism. The present results establish reference values at a level not reported before for these systems, calibrating different computational strategies and helping to discard less reliable theoretical and experimental data. The systematic study with the increasing size of the water cluster allows obtaining some clues on the structure and reductive properties of liquid water.
Quantum stereodynamics of the 18O+16O16O→16O18O+16O exchange reaction at low collision energy
2017
Abstract We present a quantum study of stereodynamics of the 18 O + 16 O 16 O ( v = 0 , j = 1 ) → 16 O 18 O ( v ′ = 0 , j ′ ) + 16 O exchange reaction at a collision energy E coll = 0.01 eV . Polarization moments of the reactants have been computed and stereodynamical portraits have been generated. The results show that the reactant preferred relative orientations are strongly dependent on the scattering angle and on the product rotational states.
Infrared Spectroscopy of Disilicon-Carbide, Si2C: The ν3 Fundamental Band
2019
The ν3 antisymmetric stretching mode of disilicon-carbide, Si2C, was studied using a narrow line width infrared quantum cascade laser spectrometer operating at 8.3 μm. The Si2C molecules were produ...
A Rotational Thermalization Model for the Calculation of Collisionally Narrowed Isotropic Raman-Scattering Spectra - Application to the Srs-N2 Q-Bran…
1986
Abstract A model for the calculation of collisionally narrowed isotropic. Raman scattering spectra is proposed. In this model, the rotational transition probabilities are calculated within the strong collision approximation, allowing the rotational energy transfer rates to be expressed in terms of the sole individual Q( J ) line broadening coefficients. These transfer rates satisfy both detailed balance principle and unitarity of the scattering matrix in contrast with most of the previous approaches. Under further approximation concerning the rotational distribution of the collisional frequency, simpler expressions for transfer rates are deduced, which do not satisfy necessarily both unitar…