Search results for "Atomic units"
showing 10 items of 22 documents
Application of Positron Annihilation Spectroscopy to Studies of Subsurface Zones Induced by Wear in Magnesium and Its Alloy AZ31
2011
Interaction of sliding bodies is an important aspect of numerous applications and subject of many studies (Solecki, 1989). Generally, when two surfaces are loaded together the true contact area is much smaller than the apparent one. The true contact is only at high points or asperities of the surfaces where the interactions in the atomic scale take place. Relative movement between the surfaces leads to friction and wear processes. The rate of wear is controlled by the load, the relative velocity and the behaviour of the material near asperities. The region of asperities can be plastically deformed and the stress is transported to the deeper laying region that becomes elastically deformed (F…
Atomic‐Scale Modelling of Electrochemical Systems
2021
Dislocation interaction with C in α-Fe: a comparison between atomic simulations and elasticity theory
2008
International audience; The interaction of C atoms with a screw and an edge dislocation is modelled at an atomic scale using an empirical Fe-C interatomic potential based on the Embedded Atom Method (EAM) and molecular statics simulations. Results of atomic simulations are compared with predictions of elasticity theory. It is shown that a quantitative agreement can be obtained between both modelling techniques as long as anisotropic elastic calculations are performed and both the dilatation and the tetragonal distortion induced by the C interstitial are considered. Using isotropic elasticity allows to predict the main trends of the interaction and considering only the interstitial dilatatio…
Anomalous water dynamics in brain: a combined diffusion magnetic resonance imaging and neutron scattering investigation
2019
International audience; Water diffusion is an optimal tool for investigating the architecture of brain tissue on which modern medical diagnostic imaging techniques rely. However, intrinsic tissue heterogeneity causes systematic deviations from pure free-water diffusion behaviour. To date, numerous theoretical and empirical approaches have been proposed to explain the non-Gaussian profile of this process. The aim of this work is to shed light on the physics piloting water diffusion in brain tissue at the micrometre-to-atomic scale. Combined diffusion magnetic resonance imaging and first pioneering neutron scattering experiments on bovine brain tissue have been performed in order to probe dif…
Revisiting spin-dependent forces mediated by new bosons : potentials in the coordinate-space representation for macroscopic- and atomic-scale experim…
2019
The exchange of spin-0 or spin-1 bosons between fermions or spin-polarised macroscopic objects gives rise to various spin-dependent potentials. We derive the coordinate-space non-relativistic potentials induced by the exchange of such bosons, including contact terms that can play an important role in atomic-scale phenomena, and correct for errors and omissions in the literature. We summarise the properties of the potentials and their relevance for various types of experiments. These potentials underpin the interpretation of experiments that search for new bosons, including spectroscopy, torsion-pendulum measurements, magnetometry, parity nonconservation and electric dipole moment experiment…
High-precision measurement of the atomic mass of the electron
2014
A very precise measurement of the magnetic moment of a single electron bound to a carbon nucleus, combined with a state-of-the-art calculation in the framework of bound-state quantum electrodynamics, gives a new value of the atomic mass of the electron that is more precise than the currently accepted one by a factor of 13. The atomic mass of the electron is a key parameter for fundamental physics. A precise determination is a challenge because the mass is so low. Sven Sturm and colleagues report on a new determination of the electron's mass in atomic units. The authors measured the magnetic moment of a single electron bound to a reference ion (a bare nucleus of carbon-12). The results were …
The fate of the resonating valence bond in graphene
2011
We apply a variational wave function capable of describing qualitatively and quantitatively the so called "resonating valence bond" in realistic materials, by improving standard ab initio calculations by means of quantum Monte Carlo methods. In this framework we clearly identify the Kekul\'e and Dewar contributions to the chemical bond of the benzene molecule, and we establish the corresponding resonating valence bond energy of these well known structures ($\simeq 0.01$eV/atom). We apply this method to unveil the nature of the chemical bond in undoped graphene and show that this picture remains only within a small "resonance length" of few atomic units.
Simulation of surface-controlled phase separation in slit pores: Diffusive Ginzburg-Landau kinetics versus Molecular Dynamics
2008
The phase separation kinetics of binary fluids in constrained geometry is a challenge for computer simulation, since nontrivial structure formation occurs extending from the atomic scale up to mesoscopic scales, and a very large range of time needs to be considered. One line of attack to this problem is to try nevertheless standard Molecular Dynamics (MD), another approach is to coarse-grain the model to apply a time-dependent nonlinear Ginzburg–Landau equation that is numerically integrated. For a symmetric binary mixture confined between two parallel walls that prefer one species, both approaches are applied and compared to each other. There occurs a nontrivial interplay between the forma…
Unravelling the atomic structure of cross-linked (1 × 2) TiO2(110).
2010
The cross-linked (1 × 2) reconstruction of TiO(2)(110) is a frequently observed phase reflecting the surface structure of titania in a significantly reduced state. Here we resolve the atomic scale structure of the cross-linked (1 × 2) phase with dynamic scanning force microscopy operated in the non-contact mode (NC-AFM). From an analysis of the atomic-scale contrast patterns of the titanium and oxygen sub-structures obtained by imaging the surface with AFM tips having different tip apex termination, we infer the hitherto most accurate model of the atomic structure of the cross-linked (1 × 2) phase. Our findings suggest that the reconstruction is based on added rows in [001] direction built …
Electric-field-controlled reversible order-disorder switching of a metal tip surface
2018
While it is well established that elevated temperatures can induce surface roughening of metal surfaces, the effect of a high electric field on the atomic structure at ambient temperature has not been investigated in detail. Here we show with atomic resolution using in situ transmission electron microscopy how intense electric fields induce reversible switching between perfect crystalline and disordered phases of gold surfaces at room temperature. Ab initio molecular dynamics simulations reveal that the mechanism behind the structural change can be attributed to a vanishing energy cost in forming surface defects in high electric fields. Our results demonstrate how surface processes can be d…