Search results for "Attosecond"

showing 10 items of 22 documents

Piecewise static Hamiltonian for an atom in strong laser field

2009

We show that it is possible to use a piecewise constant Hamiltonian to describe the main features of the dynamics of an atom interacting with a laser field. In particular we show that using this approximation we are able to give a good description of the ionization signal, of the HHG spectra and of the attosecond pulses generated by the radiating electron. Finally, we give an explicit formula to evaluate the ionization rate in the time dependent laser field. This formula, which is a generalization of the Landau formula for the ionization rate of an atom in a static electric field, fairly well reproduces the numerical ionization rates for a broad range of laser frequency and intensity. The m…

Physicscampi laserSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciAttosecondPhotoionizationElectronAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della Materiasymbols.namesakeAtom laserTunnel ionizationIonizationPhysics::Atomic and Molecular ClusterssymbolsPiecewiseAtomiPhysics::Atomic PhysicsAtomic physicsHamiltonian (quantum mechanics)
researchProduct

Ab Initio Simulation of Attosecond Transient Absorption Spectroscopy in Two-Dimensional Materials

2018

We extend the first-principles analysis of attosecond transient absorption spectroscopy to two-dimensional materials. As an example of two-dimensional materials, we apply the analysis to monolayer hexagonal boron nitride (h-BN) and compute its transient optical properties under intense few-cycle infrared laser pulses. Nonadiabatic features are observed in the computed transient absorption spectra. To elucidate the microscopic origin of these features, we analyze the electronic structure of h-BN with density functional theory and investigate the dynamics of specific energy bands with a simple two-band model. Finally, we find that laser-induced intraband transitions play a significant role in…

Materials scienceattosecond transient absorption spectroscopyAttosecondAb initioFOS: Physical sciences02 engineering and technologyElectronic structure01 natural sciencesMolecular physicslcsh:TechnologySettore FIS/03 - Fisica Della Materialcsh:Chemistry0103 physical sciencesUltrafast laser spectroscopyGeneral Materials Science010306 general physicsSpectroscopyInstrumentationlcsh:QH301-705.5Fluid Flow and Transfer ProcessesCondensed Matter - Materials Sciencelcsh:TProcess Chemistry and TechnologyGeneral EngineeringMaterials Science (cond-mat.mtrl-sci)Time-dependent density functional theory021001 nanoscience & nanotechnologylcsh:QC1-999Computer Science Applicationstime-dependent density functional theoryfirst-principles simulationlcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Density functional theoryTransient (oscillation)0210 nano-technologylcsh:Engineering (General). Civil engineering (General)lcsh:PhysicsOptics (physics.optics)Physics - OpticsApplied Sciences
researchProduct

Publisher's Note: “Attosecond state-resolved carrier motion in quantum materials probed by soft x-ray XANES” [Appl. Phys Rev. 8, 011408 (2021)]

2021

Recent developments in attosecond technology led to table-top x-ray spectroscopy in the soft x-ray range, thus uniting the element- and state-specificity of core-level x-ray absorption spectroscopy with the time resolution to follow electronic dynamics in real-time. We describe recent work in attosecond technology and investigations into materials such as Si, SiO2, GaN, Al2O3, Ti, and TiO2, enabled by the convergence of these two capabilities. We showcase the state-of-the-art on isolated attosecond soft x-ray pulses for x-ray absorption near-edge spectroscopy to observe the 3d-state dynamics of the semi-metal TiS2 with attosecond resolution at the Ti L-edge (460 eV). We describe how the ele…

PhysicsSoft x rayAttosecondGeneral Physics and AstronomyMotion (geometry)State (functional analysis)Atomic physics7. Clean energyQuantumXANES
researchProduct

Attosecond state-resolved carrier motion in quantum materials probed by soft x-ray XANES

2021

Recent developments in attosecond technology led to tabletop X-ray spectroscopy in the soft X-ray range, thus uniting the element- and state-specificity of core-level x-ray absorption spectroscopy with the time resolution to follow electronic dynamics in real time. We describe recent work in attosecond technology and investigations into materials such as Si, SiO2, GaN, Al2O3, Ti, TiO2, enabled by the convergence of these two capabilities. We showcase the state-of-the-art on isolated attosecond soft x-ray pulses for x-ray absorption near edge spectroscopy (XANES) to observe the 3d-state dynamics of the semi-metal TiS2 with attosecond resolution at the Ti L-edge (460 eV). We describe how the …

Phase transitionMaterials scienceAbsorption spectroscopyAttosecondGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyElectron01 natural sciences7. Clean energy0103 physical sciencesSpectroscopy010302 applied physicsCondensed Matter - Materials Science:Física [Àrees temàtiques de la UPC]business.industryX-RaysMaterials Science (cond-mat.mtrl-sci)FísicaÒptica021001 nanoscience & nanotechnologyBrillouin zoneSemiconductorx-rayCharge carrierRaigs XAtomic physics0210 nano-technologybusiness
researchProduct

Unravelling the Intertwined Atomic and Bulk Nature of Localised Excitons by Attosecond Spectroscopy

2021

The electro-optical properties of most semiconductors and insulators of technological interest are dominated by the presence of electron-hole quasi-particles, called excitons. The manipulation of excitons in dielectrics has recently received great attention, with possible applications in different fields including optoelectronics and photonics. Here, we apply attosecond transient reflection spectroscopy in a sequential two-foci geometry and observe sub-femtosecond dynamics of a core-level exciton in bulk MgF2 single crystals. Furthermore, we access absolute phase delays, which allow for an unambiguous comparison with theoretical calculations. Our results show that excitons surprisingly exhi…

optoelectronicsAttosecondphotonicsAttosecond dynamicsGeneral Physics and AstronomyPhysics::Optics02 engineering and technologysemiconductorsTransient reflectivity01 natural sciencesSettore FIS/03 - Fisica Della MateriaUltrafast photonicsPhysicsMultidisciplinaryCondensed matter physicsQCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyfemtosecond optical Stark effectdielectricsStark effectFemtosecondsymbols0210 nano-technologyPhysics - OpticsElectronic properties and materialsattosecondexcitonsScienceExcitonFOS: Physical sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyCondensed Matter::Materials Sciencesymbols.namesakeMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesPhysics::Atomic and Molecular Clusters010306 general physicsSpectroscopyCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryGeneral ChemistryCore excitonselectro-optical propertiesSemiconductorPhotonicsbusinessUltrashort pulseelectron-hole quasi-particlesOptics (physics.optics)
researchProduct

First-principles simulations for attosecond photoelectron spectroscopy based on time-dependent density functional theory

2018

We develop a first-principles simulation method for attosecond time-resolved photoelectron spectroscopy. This method enables us to directly simulate the whole experimental processes, including excitation, emission and detection on equal footing. To examine the performance of the method, we use it to compute the reconstruction of attosecond beating by interference of two-photon transitions (RABBITT) experiments of gas-phase Argon. The computed RABBITT photoionization delay is in very good agreement with recent experimental results from [Klünder et al., Phys. Rev. Lett. 106, 143002 (2011)] and [Guénot et al., Phys. Rev. A 85, 053424 (2012)]. This indicates the significance of a fully-consiste…

PhysicsSolid-state physicsAtomic Physics (physics.atom-ph)AttosecondFOS: Physical sciencesObservable02 engineering and technologyPhotoionizationTime-dependent density functional theory021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSettore FIS/03 - Fisica Della MateriaSpectral linePhysics - Atomic PhysicsElectronic Optical and Magnetic MaterialsX-ray photoelectron spectroscopyRABBIT0103 physical sciencesPhysics::Atomic and Molecular ClustersAtomic physics010306 general physics0210 nano-technologyExcitationThe European Physical Journal B
researchProduct

Transient attosecond soft-X-ray spectroscopy in layered semi-metals (Conference Presentation)

2020

X-ray absorption fine-structure (XAFS) spectroscopy is a well-established technique capable of extracting information about a material’s electronic and lattice structure with atomic resolution. While the near-edge region (XANES) of a XAFS spectrum provides information about the electronic configuration, structural information is extracted from the extended XAFS (EXAFS) spectrum, consisting of several hundreds of eV above the absorption edge. With the advent of high harmonic sources, reaching photon energies in soft x-ray (SXR) region, it now becomes possible to connect the spectroscopic capabilities of XAFS to the unprecedented attosecond temporal resolution of a high harmonic source allowi…

Water windowMaterials scienceExtended X-ray absorption fine structureAbsorption edgeAttosecondAtomic physicsAbsorption (electromagnetic radiation)SpectroscopyXANESX-ray absorption fine structure
researchProduct

Attosecond control of dissociative ionization of O2molecules

2011

We demonstrate that dissociative ionization of O(2) can be controlled by the relative delay between an attosecond pulse train (APT) and a copropagating infrared (IR) field. Our experiments reveal a dependence of both the branching ratios between a range of electronic states and the fragment angular distributions on the extreme ultraviolet (XUV) to IR time delay. The observations go beyond adiabatic propagation of dissociative wave packets on IR-induced quasistatic potential energy curves and are understood in terms of an IR-induced coupling between electronic states in the molecular ion.

PhysicsInfraredAtom and Molecular Physics and OpticsWave packetAttosecondAstrophysics::Cosmology and Extragalactic AstrophysicsElectronic structureMolecular physicsPotential energySettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsTime resolved fragmentationAtomic and Molecular PhysicsExtreme ultravioletIonizationPhysics::Atomic and Molecular ClustersAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary Astrophysicsand OpticsAtomic physicsAdiabatic processAstrophysics::Galaxy AstrophysicsPhysical Review A
researchProduct

A three-colour scheme to generate isolated attosecond pulses

2009

We propose a new scheme to produce isolated attosecond pulses, involving the use of three laser pulses: a fundamental laser field of intensity I = 3.5 × 1014 W cm−2 and of wavelength λ = 820 nm, and two properly chosen weak lasers with wavelengths 1.5λ and 0.5λ. The three lasers have a Gaussian envelope of 36 fs full width at half maximum. The resulting total field is an asymmetric electric field with an isolated peak. We show that a model atom, interacting with the above-defined total field, generates an isolated attosecond pulse as short as 1/10 of a laser period, i.e. approximately 270 as.

PhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciField (physics)business.industryAttosecondAttosecond pulses lasersCondensed Matter PhysicsLaserAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della Materialaw.inventionWavelengthFull width at half maximumOpticslawElectric fieldAtombusinessEnvelope (waves)
researchProduct

Realization of time-resolved two-vacuum-ultraviolet-photon ionization

2009

International audience; Ultrafast dynamics of excited molecules is studied through time-resolved two-vacuum-ultraviolet (vuv)- photon ionization using a nonlinear volume autocorrelator unit. The two-vuv-photon process is induced by the intense fifth harmonic radiation of a femtosecond Ti:sapphire laser. In a proof-of-principle experiment, ultrafast dynamics of excited ethylene and oxygen molecules are investigated. Molecular decay times are deduced by comparing the experimental data with the results of a numerical model that accounts for the spatial and temporal characteristics of the harmonic field. The present experiments pave a convenient way for time domain investigations in the vuv-xuv s…

spectroscopyattosecondPhoton[ PHYS.PHYS.PHYS-ATOM-PH ] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Physics::Opticsphotoionisationnm01 natural sciences7. Clean energyAtmospheric-pressure laser ionization010309 opticsFrequency conversionIonizationhigher order harmonic generation0103 physical sciencesPhysics::Atomic and Molecular Clustersethylenemoleculestwo-photon processesPhysics::Chemical Physics010306 general physicsUltrafast dynamicsPhysics[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]photodissociationdynamicsVUVAtomic and Molecular Physics and Opticslaser-pulsesVacuum ultravioletExtreme ultravioletmolecule-photon collisionsXUX32.80.Rm 42.65.Re 42.65.KyHHGAtomic physicsultrafast internal-conversionorganic compoundsphysicsRealization (systems)oxygen
researchProduct