Search results for "Autore"
showing 10 items of 352 documents
Pre- and post-ictal brain activity characterization using combined source decomposition and connectivity estimation in epileptic children
2019
In this research, the study of functional connectivity between sources of electroencephalogram (EEG) activity assessed for different classes (well before seizure, preictal and post-ictal) was performed. EEG recordings were acquired from 12 subjects with focal epilepsy. Then, ten common spatial patterns (CSP) were obtained for EEG segments describing 95% of Riemannian distance between pairs of classes, followed by estimation of multivariate autoregressive (MVAR) models’ coefficients. The MVAR models were further used to extract coherence as a functional connectivity measures. Our results show that the coherence between CSP sources differs between baseline and pre-ictal segments: it has the l…
Testing different methodologies for Granger causality estimation: A simulation study
2021
Granger causality (GC) is a method for determining whether and how two time series exert causal influences one over the other. As it is easy to implement through vector autoregressive (VAR) models and can be generalized to the multivariate case, GC has spread in many different areas of research such as neuroscience and network physiology. In its basic formulation, the computation of GC involves two different regressions, taking respectively into account the whole past history of the investigated multivariate time series (full model) and the past of all time series except the putatively causal time series (restricted model). However, the restricted model cannot be represented through a finit…
Vector Autoregressive Fractionally Integrated Models to Assess Multiscale Complexity in Cardiovascular and Respiratory Time Series
2020
Cardiovascular variability is the result of the activity of several physiological control mechanisms, which involve different variables and operate across multiple time scales encompassing short term dynamics and long range correlations. This study presents a new approach to assess the multiscale complexity of multivariate time series, based on linear parametric models incorporating autoregressive coefficients and fractional integration. The approach extends to the multivariate case recent works introducing a linear parametric representation of multiscale entropy, and is exploited to assess the complexity of cardiovascular and respiratory time series in healthy subjects studied during postu…
Surrogate Data Analysis for Assessing the Significance of the Coherence Function
2004
In cardiovascular variability analysis, the significance of the coupling between two time series is commonly assessed by setting a threshold level in the coherence function. While traditionally used statistical tests consider only the parameters of the adopted estimator, the required zero-coherence level may be affected by some features of the observed series. In this study, three procedures, based on the generation of surrogate series sharing given properties with the original but being structurally uncoupled, were considered: independent identically distributed (IID), Fourier transform (FT), and autoregressive (AR). IID surrogates maintained the distribution of the original series, while …
Inclusion of Instantaneous Influences in the Spectral Decomposition of Causality: Application to the Control Mechanisms of Heart Rate Variability
2021
Heart rate variability is the result of several physiological regulation mechanisms, including cardiovascular and cardiorespiratory interactions. Since instantaneous influences occurring within the same cardiac beat are commonplace in this regulation, their inclusion is mandatory to get a realistic model of physiological causal interactions. Here we exploit a recently proposed framework for the spectral decomposition of causal influences between autoregressive processes [2] and generalize it by introducing instantaneous couplings in the vector autoregressive model (VAR). We show the effectiveness of the proposed approach on a toy model, and on real data consisting of heart period (RR), syst…
Model-Based Transfer Entropy Analysis of Brain-Body Interactions with Penalized regression techniques
2020
The human body can be seen as a functional network depicting the dynamical interactions between different organ systems. This exchange of information is often evaluated with information-theoretic approaches which comprise the use of vector autoregressive (VAR) and state space (SS) models, normally identified with the Ordinary Least Squares (OLS). However, the number of time series to be included in the model is strictly related to the length of data recorded thus limiting the use of the classical approach. In this work, a new method based on penalized regressions, the so-called LASSO, was compared with OLS on physiological time-series extracted from 18 subjects during different stress condi…
The Flipped Classroom: a Way to Decrease Boredom and Encourage Student Motivation. La classe capovolta: un modo per diminuire la noia ed incoraggiare…
2016
Recenti studi hanno mostrato l'effetto della noia sul successo. L'esperienza della noia vissuta da molti studenti, insieme con i suoi effetti deleteri, implica chiaramente che educatori ed insegnanti, in quanto responsabili della progettazione di ambienti di apprendimento, prestino maggiore attenzione a questa emozione. Questo contributo intende esaminare l'impatto del modello di insegnamento capovolto sul processo di apprendimento dello studente. Nella ricerca sono state utilizzate differenti metodologie, tra cui un inventario sulla percezione degli studenti e l'osservazione delle pratiche di insegnamento, per indagare se ed in che modo gli insegnanti riescono a gestire la noia in modo div…
Data-based modeling of vehicle collisions by nonlinear autoregressive model and feedforward neural network
2013
Vehicle crash test is the most direct and common method to assess vehicle crashworthiness. Visual inspection and obtained measurements, such as car acceleration, are used, e.g. to examine impact severity of an occupant or to assess overall car safety. However, those experiments are complex, time-consuming, and expensive. We propose a method to reproduce car kinematics during a collision using nonlinear autoregressive (NAR) model which parameters are estimated by the use of feedforward neural network. NAR model presented in this study is derived from the more general one - nonlinear autoregressive with moving average (NARMA). Suitability of autoregressive systems for data-based modeling was …
How do normalization schemes affect net spillovers? A replication of the Diebold and Yilmaz (2012) study
2019
Abstract This paper replicates the Diebold and Yilmaz (2012) study on the connectedness of the commodity market and three other financial markets: the stock market, the bond market, and the FX market, based on the Generalized Forecast Error Variance Decomposition, GEFVD. We show that the net spillover indices (of directional connectedness), used to assess the net contribution of one market to overall risk in the system, are sensitive to the normalization scheme applied to the GEFVD. We show that, considering data generating processes characterized by different degrees of persistence and covariance, a scalar-based normalization of the Generalized Forecast Error Variance Decomposition is pref…
Were the chaotic ELMs in TCV the result of an ARMA process?
2004
The results of a previous paper claiming the demonstration that edge localized mode (ELM) dynamics on TCV are chaotic in a number of cases has recently been called into question, because the statistical test employed was found to also identify linear auto regressive—moving average (ARMA) models as chaotic. The TCV ELM data has therefore been re-examined with an improved method that is able to make this distinction, and the ARMA model is found to be an inappropriate description of the dynamics on TCV. The hypothesis that ELM dynamics are chaotic on TCV in a number of cases is therefore still favoured.