Search results for "Autoregressive model"

showing 10 items of 120 documents

Temperature and seasonality influences on Spanish electricity load

2002

Abstract Deregulation of the Spanish electricity market in 1998 and the possible listing of electricity or weather derivative contracts have encouraged the study of the relationship between electricity demand and weather in Spain. In this paper, a transfer function intervention model is developed for forecasting daily electricity load from cooling and heating degree–days. The influence of weather and seasonality is proved, and is significant even when the autoregressive effects and the dynamic specification of the temperature are taken into account. The estimated general model shows a high predictive power. The results and information presented in this paper could be of interest for current…

Economics and Econometricsbusiness.industryWeather derivativeDeregulationGeneral EnergyAutoregressive modelEconometricsEconomicsPredictive powerElectricity marketElectricityListing (finance)businessEnergy economicsEnergy Economics
researchProduct

No linealidad y asimetría en el proceso generador del Índice Ibex35

2013

This paper analyzes the behavior of Ibex35 from January 1999 to December 2001, in order to check if it follows a different process from random walk so its return is not a white noise and it can be predictable, against the efficient market hypothesis. For that, a nonlinear generating process of return will be considered and a STAR-APARCH model will be specified. This model allows a nonlinear behavior in the conditional mean and in the conditional variance. The empirical results show that the Ibex35 follows a nonlinear and asymmetric process, both in the conditional mean as in the conditional variance, so the weak-version of efficient market hypothesis is rejected. El trabajo analiza el compo…

Economics and Econometricsjel:C53White noisejel:C22EconomiaConditional expectationRandom walkEfficient-market hypothesisNonlinear systemjel:G14Order (exchange)Mercados eficientes no linealidad asimetría media condicional varianza condicional modelos autorregresivos con umbral Efficient markets nonlinearity asymmetry conditional mean conditional variance threshold autoregressive modelsStatisticsEconometricsConditional varianceMathematics
researchProduct

On the property of diffusion in the spatial error model.

2005

International audience; The aim of this paper is to illustrate the property of global spillover effects in the first-order spatial autoregressive error model and the associated diffusion process of spatial shocks. An application is provided on a sample of 145 regions over 1989–1999 and highlights the most influential regions.

Economics and Econometricsspatial analysisProperty (programming)0211 other engineering and technologiesMarkov processSample (statistics)02 engineering and technologysymbols.namesakeSpillover effect0502 economics and businessEconometricsEconomics[ SHS.ECO ] Humanities and Social Sciences/Economies and finances050207 economicsDiffusion (business)EconLit - Code JEL : C21[SHS.ECO] Humanities and Social Sciences/Economics and FinanceComputingMilieux_MISCELLANEOUSerror analysisMathematical modelautoregressionMarkov processes05 social sciences021107 urban & regional planningdiffusion processes[SHS.ECO]Humanities and Social Sciences/Economics and FinanceDiffusion processAutoregressive modelsymbolsmathematical models
researchProduct

Deregulated Electric Energy Price Forecasting in NordPool Market using Regression Techniques

2019

Deregulated electricity market day-ahead electrical energy price forecasting is important. It is influenced by external parameters and it is a complicated function. In this work two neighboring regions in the NordPool market are analyzed to provide day-ahead electrical price forecasting using regression techniques. The characteristics of the NordPool market trading behavior leads to unanticipated price peaks at daily, weekly and annual level. The considered two Nordic regions have different energy generation sources (e.g Norway has controllable hydro power, Denmark has non-controllable wind-power) therefore day-ahead electrical energy price forecasting in deregulated market for these two ne…

Electricity generationAutoregressive modelWork (electrical)business.industryElectric potential energyEconometricsEconomicsElectricity marketElectricitybusinessMarket impactRegression2019 IEEE Sustainable Power and Energy Conference (iSPEC)
researchProduct

Spectral decomposition of cerebrovascular and cardiovascular interactions in patients prone to postural syncope and healthy controls.

2022

We present a framework for the linear parametric analysis of pairwise interactions in bivariate time series in the time and frequency domains, which allows the evaluation of total, causal and instantaneous interactions and connects time- and frequency-domain measures. The framework is applied to physiological time series to investigate the cerebrovascular regulation from the variability of mean cerebral blood flow velocity (CBFV) and mean arterial pressure (MAP), and the cardiovascular regulation from the variability of heart period (HP) and systolic arterial pressure (SAP). We analyze time series acquired at rest and during the early and late phase of head-up tilt in subjects developing or…

Endocrine and Autonomic SystemsTime series analysisBlood PressureHeartBaroreflexCardiovascular SystemSyncopeCerebral autoregulationCellular and Molecular NeuroscienceHeart RateAutoregressive modelsCardiovascular controlCerebrovascular CirculationGranger causalitySettore ING-INF/06 - Bioingegneria Elettronica e InformaticaHumansNeurology (clinical)Spectral decompositionAutoregressive models; Cardiovascular control; Cerebral autoregulation; Granger causality; Spectral decomposition; Time series analysis;Autonomic neuroscience : basicclinical
researchProduct

NARX Models of an Industrial Power Plant Gas Turbine

2005

This brief reports the experience with the identification of a nonlinear autoregressive with exogenous inputs (NARX) model for the PGT10B1 power plant gas turbine manufactured by General Electric-Nuovo Pignone. Two operating conditions of the turbine are considered: isolated mode and nonisolated mode. The NARX model parameters are estimated iteratively with a Gram-Schmidt procedure, exploiting both forward and stepwise regression. Many indexes have been evaluated and compared in order to perform subset selection in the functional basis set and determine the structure of the nonlinear model. Various input signals (from narrow to broadband) for identification and validation have been consider…

EngineeringNonlinear autoregressive exogenous modelbusiness.industryTurbinesSystem identificationControl engineeringNonlinear controlTurbineDistributed power generationElectric power systemNonlinear systemAutoregressive modelControl and Systems EngineeringSteam turbineControl theoryElectrical and Electronic EngineeringbusinessGas turbines
researchProduct

On the interpretability and computational reliability of frequency-domain Granger causality

2017

This Correspondence article is a comment which directly relates to the paper “A study of problems encountered in Granger causality analysis from a neuroscience perspective” (Stokes and Purdon, 2017). We agree that interpretation issues of Granger causality (GC) in neuroscience exist, partially due to the historically unfortunate use of the name “causality”, as described in previous literature. On the other hand, we think that Stokes and Purdon use a formulation of GC which is outdated (albeit still used) and do not fully account for the potential of the different frequency-domain versions of GC; in doing so, their paper dismisses GC measures based on a suboptimal use of them. Furthermore, s…

FOS: Computer and information sciences0301 basic medicineTheoretical computer scienceImmunology and Microbiology (all)Computer scienceTime series analysiMathematics - Statistics TheoryStatistics Theory (math.ST)Statistics - ApplicationsGeneral Biochemistry Genetics and Molecular BiologyMethodology (stat.ME)Causality (physics)03 medical and health sciences0302 clinical medicinegranger causalityGranger causalityCorrespondenceFOS: MathematicsApplications (stat.AP)Physiological oscillationGeneral Pharmacology Toxicology and PharmaceuticsTime seriessignal processingStatistical Methodologies & Health Informaticsfrequency-domain connectivityReliability (statistics)Statistics - MethodologyInterpretabilityGranger-Geweke causalityBiochemistry Genetics and Molecular Biology (all)Interpretation (logic)General Immunology and Microbiologybrain connectivityGeneral MedicineArticlesvector autoregressive models030104 developmental biologyMathematics and StatisticsWildcardVector autoregressive modelPharmacology Toxicology and Pharmaceutics (all)Frequency domaintime series analysisspectral decompositionSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaBrain connectivity; Directed coherence; Frequency-domain connectivity; Granger-Geweke causality; Physiological oscillations; Spectral decomposition; Time series analysis; Vector autoregressive models; Biochemistry Genetics and Molecular Biology (all); Immunology and Microbiology (all); Pharmacology Toxicology and Pharmaceutics (all)directed coherence030217 neurology & neurosurgeryphysiological oscillations
researchProduct

Multiscale Information Decomposition: Exact Computation for Multivariate Gaussian Processes

2017

Exploiting the theory of state space models, we derive the exact expressions of the information transfer, as well as redundant and synergistic transfer, for coupled Gaussian processes observed at multiple temporal scales. All of the terms, constituting the frameworks known as interaction information decomposition and partial information decomposition, can thus be analytically obtained for different time scales from the parameters of the VAR model that fits the processes. We report the application of the proposed methodology firstly to benchmark Gaussian systems, showing that this class of systems may generate patterns of information decomposition characterized by prevalently redundant or sy…

FOS: Computer and information sciencesInformation transferComputer scienceGaussianSocial SciencesGeneral Physics and AstronomyInformation theory01 natural sciences010305 fluids & plasmasState spaceStatistical physicslcsh:Scienceinformation theorymultiscale entropylcsh:QC1-999Interaction informationMathematics and Statisticssymbolsinformation dynamicsInformation dynamics; Information transfer; Multiscale entropy; Multivariate time series analysis; Redundancy and synergy; State space models; Vector autoregressive models; Physics and Astronomy (all)information dynamics; information transfer; multiscale entropy; multivariate time series analysis; redundancy and synergy; state space models; vector autoregressive modelsMultivariate time series analysiMathematics - Statistics Theorylcsh:AstrophysicsStatistics Theory (math.ST)Statistics - ApplicationsMethodology (stat.ME)symbols.namesakePhysics and Astronomy (all)0103 physical scienceslcsh:QB460-466FOS: Mathematicsinformation transferRelevance (information retrieval)Applications (stat.AP)Transfer Entropy010306 general physicsGaussian processStatistics - MethodologyState space modelstate space modelsmultivariate time series analysisredundancy and synergyvector autoregressive modelsInformation dynamicVector autoregressive modelSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaTransfer entropylcsh:Qlcsh:PhysicsEntropy
researchProduct

Local Granger causality

2021

Granger causality is a statistical notion of causal influence based on prediction via vector autoregression. For Gaussian variables it is equivalent to transfer entropy, an information-theoretic measure of time-directed information transfer between jointly dependent processes. We exploit such equivalence and calculate exactly the 'local Granger causality', i.e. the profile of the information transfer at each discrete time point in Gaussian processes; in this frame Granger causality is the average of its local version. Our approach offers a robust and computationally fast method to follow the information transfer along the time history of linear stochastic processes, as well as of nonlinear …

FOS: Computer and information sciencesInformation transferGaussianFOS: Physical sciencestechniques; information theory; granger causalityMachine Learning (stat.ML)Quantitative Biology - Quantitative Methods01 natural sciences010305 fluids & plasmasVector autoregressionsymbols.namesakegranger causalityGranger causalityStatistics - Machine Learning0103 physical sciencesApplied mathematicstime serie010306 general physicsQuantitative Methods (q-bio.QM)Mathematicsinformation theoryStochastic processDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksComputational Physics (physics.comp-ph)Discrete time and continuous timeAutoregressive modelFOS: Biological sciencesSettore ING-INF/06 - Bioingegneria Elettronica E InformaticasymbolsTransfer entropytechniquesPhysics - Computational Physics
researchProduct

Multiscale analysis of information dynamics for linear multivariate processes.

2016

In the study of complex physical and physiological systems represented by multivariate time series, an issue of great interest is the description of the system dynamics over a range of different temporal scales. While information-theoretic approaches to the multiscale analysis of complex dynamics are being increasingly used, the theoretical properties of the applied measures are poorly understood. This study introduces for the first time a framework for the analytical computation of information dynamics for linear multivariate stochastic processes explored at different time scales. After showing that the multiscale processing of a vector autoregressive (VAR) process introduces a moving aver…

FOS: Computer and information sciencesInformation transferMultivariate statisticsMultivariate analysisComputer scienceComputer Science - Information Theory0206 medical engineeringStochastic ProcesseBiomedical EngineeringFOS: Physical sciencesInformation Storage and RetrievalHealth Informatics02 engineering and technology01 natural sciencesEntropy (classical thermodynamics)Moving average0103 physical sciencesEntropy (information theory)Computer SimulationStatistical physicsEntropy (energy dispersal)Time series010306 general physicsEntropy (arrow of time)Multivariate Analysi1707Stochastic ProcessesEntropy (statistical thermodynamics)Stochastic processInformation Theory (cs.IT)Probability and statisticsModels Theoretical020601 biomedical engineeringComplex dynamicsAutoregressive modelPhysics - Data Analysis Statistics and ProbabilitySignal ProcessingSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaMultivariate AnalysisData Analysis Statistics and Probability (physics.data-an)Entropy (order and disorder)Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
researchProduct